-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
642 lines (536 loc) · 27.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import logging
import transformers
from transformers import Trainer
import inspect
from typing import Dict, Union, Any
import torch
import json
from torch import nn
from transformers.modeling_utils import PreTrainedModel, load_sharded_checkpoint, unwrap_model
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.trainer_callback import TrainerControl, TrainerState
from transformers.training_args import TrainingArguments
from image_utils import flattened_patches_to_image
import wandb
import numpy as np
import torch.distributed as dist
import random
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from transformers.optimization import get_scheduler
from torch.optim.lr_scheduler import LambdaLR
from torch.optim import Optimizer
import math
import os
import subprocess
from packaging import version
import accelerate
from transformers.trainer_pt_utils import find_batch_size, nested_concat, nested_numpify
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from transformers.trainer_utils import seed_worker
logger = logging.getLogger(__name__)
def is_ge_version(v):
return version.parse(transformers.__version__) >= version.parse(v)
def _set_signature_columns_if_needed(self):
if self._signature_columns is None:
# Inspect model forward signature to keep only the arguments it accepts.
signature = inspect.signature(self.model.forward)
self._signature_columns = list(signature.parameters.keys())
# Labels may be named label or label_ids, the default data collator handles that.
self._signature_columns += list(set(["label", "label_ids", "tokens", "image", "font_size", "text", "patch_mask"] + self.label_names))
def compute_loss(self, model, inputs, return_outputs=False):
"""
How the loss is computed by Trainer. By default, all models return the loss in the first element.
Subclass and override for custom behavior.
"""
if self.label_smoother is not None and "labels" in inputs:
labels = inputs.pop("labels")
else:
labels = None
outputs = model(**inputs)
# Save past state if it exists
# TODO: this needs to be fixed and made cleaner later.
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index]
if labels is not None:
if unwrap_model(model)._get_name() in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
loss = self.label_smoother(outputs, labels, shift_labels=True)
else:
loss = self.label_smoother(outputs, labels)
else:
if isinstance(outputs, dict) and "loss" not in outputs:
raise ValueError(
"The model did not return a loss from the inputs, only the following keys: "
f"{','.join(outputs.keys())}. For reference, the inputs it received are {','.join(inputs.keys())}."
)
# We don't use .loss here since the model may return tuples instead of ModelOutput.
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
# Extra logs
mae_loss_key = "pixel_loss" if hasattr(outputs, "pixel_loss") else "mae_loss"
logits_key = "patch_logits" if hasattr(outputs, "patch_logits") else "logits"
prefix = "eval_" if return_outputs else ""
if not dist.is_initialized() or dist.get_rank() == 0: # This is an ugly way to log stuff and probably not thread-safe so only log it on rank == 0
if not hasattr(self, "extra_logs"):
self.extra_logs = {}
if hasattr(outputs, mae_loss_key):
self.extra_logs[prefix + mae_loss_key] = outputs[mae_loss_key].item()
if self.args.log_eval_image_pred and return_outputs is True:
images = [
flattened_patches_to_image(
outputs[logits_key][i].detach().cpu().to(torch.float32),
height=self.args.height,
width=self.args.width,
patch_height=self.args.patch_height,
patch_width=self.args.patch_width,
image_mode=getattr(self.args, 'image_mode', 'RGB')
)
for i in range(len(outputs[logits_key]))
] # WARNING: I didn't set the size here
self.extra_logs[prefix + "image_pred"] = [wandb.Image(image) for image in images]
images = [
flattened_patches_to_image(
inputs["flattened_patches"][i, :, 2:].detach().cpu().to(torch.float32),
height=self.args.height,
width=self.args.width,
patch_height=self.args.patch_height,
patch_width=self.args.patch_width,
image_mode=getattr(self.args, 'image_mode', 'RGB')
)
for i in range(len(inputs["flattened_patches"]))
]
self.extra_logs[prefix + "image_input"] = [wandb.Image(image) for image in images]
if hasattr(outputs, "mask"):
images = [
flattened_patches_to_image(
outputs[logits_key][i].detach().cpu().to(torch.float32),
mask=outputs["mask"][i].detach().cpu().long(),
original_patches=inputs["flattened_patches"][i, :, 2:].detach().cpu().to(torch.float32),
height=self.args.height, width=self.args.width,
patch_height=self.args.patch_height,
patch_width=self.args.patch_width,
image_mode=getattr(self.args, 'image_mode', 'RGB')
)
for i in range(len(outputs[logits_key]))
] # WARNING: I didn't set the size here
self.extra_logs[prefix + "image_pred_mask"] = [wandb.Image(image) for image in images]
elif "flattened_patches" in inputs and self.args.log_eval_image_pred and return_outputs is True:
images = [
flattened_patches_to_image(
inputs["flattened_patches"][i, :, 2:].detach().cpu().to(torch.float32),
height=self.args.height,
width=self.args.width,
patch_height=self.args.patch_height,
patch_width=self.args.patch_width,
image_mode=getattr(self.args, 'image_mode', 'RGB')
)
for i in range(len(inputs["flattened_patches"]))
]
self.extra_logs[prefix + "image_input"] = [wandb.Image(image) for image in images]
if hasattr(outputs, "mask"): # ViT MAE
images = [
flattened_patches_to_image(
outputs[logits_key][i].detach().cpu().to(torch.float32),
height=self.args.height,
width=self.args.width,
patch_height=self.args.patch_height,
patch_width=self.args.patch_width,
image_mode=getattr(self.args, 'image_mode', 'RGB')
)
for i in range(len(outputs[logits_key]))
] # WARNING: I didn't set the size here
self.extra_logs[prefix + "image_pred"] = [wandb.Image(image) for image in images]
images = [flattened_patches_to_image(
outputs[logits_key][i].detach().cpu().to(torch.float32),
mask=outputs["mask"][i].detach().cpu().long(),
original_patches=inputs["flattened_patches"][i, :, 2:].detach().cpu().to(torch.float32),
height=self.args.height, width=self.args.width,
patch_height=self.args.patch_height,
patch_width=self.args.patch_width,
image_mode=getattr(self.args, 'image_mode', 'RGB')
)
for i in range(len(outputs[logits_key]))] # WARNING: I didn't set the size here
self.extra_logs[prefix + "image_pred_mask"] = [wandb.Image(image) for image in images]
if hasattr(outputs, "text_loss"):
self.extra_logs[prefix + "text_loss"] = outputs["text_loss"] if isinstance(outputs["text_loss"], float) else outputs["text_loss"].item()
if hasattr(outputs, "dice_loss") and outputs.dice_loss is not None:
self.extra_logs[prefix + "dice_loss"] = outputs["dice_loss"] if isinstance(outputs["dice_loss"], float) else outputs["dice_loss"].item()
# Gather losses for logging
if is_ge_version("4.34.1"):
# accelerator gather only applies to >=4.34.1
if not hasattr(self, "extra_logs"):
self.extra_logs = {}
batch_size = find_batch_size(inputs)
if hasattr(outputs, "text_loss"):
text_losses = self.accelerator.gather_for_metrics(outputs["text_loss"].mean().detach().repeat(batch_size))
self.extra_logs[prefix+"text_loss_aggr"] = text_losses if prefix+"text_loss_aggr" not in self.extra_logs else nested_concat(self.extra_logs[prefix+"text_loss_aggr"], text_losses)
if hasattr(outputs, "dice_loss") and outputs.dice_loss is not None:
dice_losses = self.accelerator.gather_for_metrics(outputs["dice_loss"].mean().detach().repeat(batch_size))
self.extra_logs[prefix+"dice_loss_aggr"] = dice_losses if prefix+"dice_loss_aggr" not in self.extra_logs else nested_concat(self.extra_logs[prefix+"dice_loss_aggr"], dice_losses)
if hasattr(outputs, mae_loss_key):
mae_losses = self.accelerator.gather_for_metrics(outputs[mae_loss_key].mean().detach().repeat(batch_size))
self.extra_logs[prefix+mae_loss_key+"_aggr"] = mae_losses if prefix+mae_loss_key+"_aggr" not in self.extra_logs else nested_concat(self.extra_logs[prefix+mae_loss_key+"_aggr"], mae_losses)
return (loss, outputs) if return_outputs else loss
# New
def compute_loss_wrapper(self, model, inputs, return_outputs=False):
saved_kwargs = {}
if "true_labels" in inputs:
saved_kwargs["true_labels"] = inputs.pop("true_labels")
loss_and_outputs = compute_loss(self, model, inputs, return_outputs=return_outputs)
if isinstance(loss_and_outputs, tuple) and len(loss_and_outputs) == 2:
loss, outputs = loss_and_outputs
if isinstance(outputs, tuple):
for k in saved_kwargs:
outputs = outputs + (saved_kwargs[k],)
elif isinstance(outputs, dict):
for k in saved_kwargs:
outputs[k] = saved_kwargs[k]
else:
for k in saved_kwargs:
setattr(outputs, k, saved_kwargs[k])
return (loss, outputs)
else:
return loss_and_outputs
def log(self, logs: Dict[str, float]) -> None:
"""
Log `logs` on the various objects watching training.
Subclass and override this method to inject custom behavior.
Args:
logs (`Dict[str, float]`):
The values to log.
"""
if self.state.epoch is not None:
logs["epoch"] = round(self.state.epoch, 2)
logs["step"] = self.state.global_step
if hasattr(self, "extra_logs"):
for key in self.extra_logs:
if "aggr" in key:
h = nested_numpify(self.extra_logs[key])
logs.update({key: h.mean().item()})
else:
logs.update({key: self.extra_logs[key]})
self.extra_logs = {}
self.control = self.callback_handler.on_log(self.args, self.state, self.control, logs)
# Pop up the image type because they can't be saved
pop_keys = []
for key in logs:
if "image_pred" in key or "image_input" in key:
pop_keys.append(key)
for key in pop_keys:
logs.pop(key)
output = {**logs}
self.state.log_history.append(output)
import signal
from subprocess import call
class SIGUSR1Callback(transformers.TrainerCallback):
def __init__(self) -> None:
super().__init__()
self.signal_received = False
signal.signal(signal.SIGUSR1, self.handle_signal)
# signal.signal(signal.SIGINT, self.handle_signal)
logger.warn("Handler registered")
def handle_signal(self, signum, frame):
self.signal_received = True
logger.warn("Signal received")
def on_step_end(self, args, state, control, **kwargs):
if self.signal_received:
control.should_save = True
control.should_training_stop = True
def on_train_end(self, args, state, control, **kwargs):
if self.signal_received:
exit(0)
def _pad_tensors_to_max_len(self, tensor, max_length):
if self.model.config.pad_token_id is not None:
pad_token_id = self.model.config.pad_token_id
else:
raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")
padded_tensor = pad_token_id * torch.ones(
(tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
)
padded_tensor[:, : tensor.shape[-1]] = tensor
return padded_tensor
def prediction_step_seq2seq(
self,
model: nn.Module,
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Copied from HF's seq2seq_trainer.py
Perform an evaluation step on `model` using `inputs`.
Subclass and override to inject custom behavior.
Args:
model (`nn.Module`):
The model to evaluate.
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument `labels`. Check your model's documentation for all accepted arguments.
prediction_loss_only (`bool`):
Whether or not to return the loss only.
gen_kwargs:
Additional `generate` specific kwargs.
Return:
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
labels (each being optional).
"""
has_labels = "labels" in inputs
inputs = self._prepare_inputs(inputs)
# XXX: adapt synced_gpus for fairscale as well
# Priority (handled in generate):
# gen_kwargs > model.generation_config > default GenerationConfig()
gen_kwargs = self._gen_kwargs
# If the `decoder_input_ids` was created from `labels`, evict the former, so that the model can freely generate
# (otherwise, it would continue generating from the padded `decoder_input_ids`)
if (
"labels" in inputs
and "decoder_input_ids" in inputs
and inputs["labels"].shape == inputs["decoder_input_ids"].shape
):
inputs = {k: v for k, v in inputs.items() if k != "decoder_input_ids"}
# New
true_labels = inputs.pop("true_labels", None)
generated_tokens = self.model.generate(**inputs, **gen_kwargs)
# in case the batch is shorter than max length, the output should be padded
# if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
# generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
if gen_kwargs["max_new_tokens"] is not None and generated_tokens.shape[-1] < gen_kwargs["max_new_tokens"] + 1:
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1)
with torch.no_grad():
if has_labels:
with self.compute_loss_context_manager():
outputs = model(**inputs)
if self.label_smoother is not None:
loss = self.label_smoother(outputs, inputs["labels"]).mean().detach()
else:
loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach()
else:
loss = None
if self.args.prediction_loss_only:
return loss, None, None
if has_labels:
labels = inputs["labels"]
# if labels.shape[-1] < gen_config.max_length:
# labels = self._pad_tensors_to_max_len(labels, gen_config.max_length)
# if gen_config.max_new_tokens is not None and labels.shape[-1] < gen_config.max_new_tokens + 1:
# labels = self._pad_tensors_to_max_len(labels, gen_config.max_new_tokens + 1)
if gen_kwargs["max_new_tokens"] is not None and labels.shape[-1] < gen_kwargs["max_new_tokens"] + 1:
labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_new_tokens"] + 1)
else:
labels = None
# New
if true_labels is not None:
labels = true_labels
return loss, generated_tokens, labels
def get_cosine_schedule_to_min_lr_with_warmup(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
max_lr: float,
min_lr: float = 1e-5,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to a minimum learning rate, after a warmup period during which it increases linearly
between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
max_lr (`float`):
The maximum learning rate after warming up, right before decaying
min_lr (`float`):
The minimum learning rate at the end of training
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to the min
value following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return (
max(
min_lr,
min_lr + (max_lr - min_lr) * 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)),
)
/ max_lr # Scale down by max_lr because LambdaLR multiplies back by max_lr
)
logger.info("***** Creating cosine scheduler to min_lr with warmup *****")
logger.info(f"\t{num_warmup_steps = }")
logger.info(f"\t{num_training_steps = }")
logger.info(f"\t{max_lr = }")
logger.info(f"\t{min_lr = }")
logger.info(f"\t{num_cycles = }")
logger.info(f"\t{last_epoch = }")
return LambdaLR(optimizer, lr_lambda, last_epoch)
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
"""
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
passed as an argument.
Args:
num_training_steps (int): The number of training steps to do.
"""
if self.lr_scheduler is None:
if self.args.lr_scheduler_type == "cosine" and self.args.cosine_w_min:
self.lr_scheduler = get_cosine_schedule_to_min_lr_with_warmup(
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
max_lr=self.args.learning_rate,
min_lr=self.args.min_learning_rate
)
else:
self.lr_scheduler = get_scheduler(
self.args.lr_scheduler_type,
optimizer=self.optimizer if optimizer is None else optimizer,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
return self.lr_scheduler
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (`nn.Module`):
The model to train.
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument `labels`. Check your model's documentation for all accepted arguments.
Return:
`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
inputs = self._prepare_inputs(inputs)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.args.gradient_accumulation_steps > 1 and not self.deepspeed:
# deepspeed handles loss scaling by gradient_accumulation_steps in its `backward`
loss = loss / self.args.gradient_accumulation_steps
if self.do_grad_scaling:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
# loss gets scaled under gradient_accumulation_steps in deepspeed
loss = self.deepspeed.backward(loss)
else:
if is_ge_version("4.34.1"):
self.accelerator.backward(loss)
else:
loss.backward()
if getattr(self.args, "log_grad_norm", False):
if not hasattr(self, "extra_logs"):
self.extra_logs = {}
# Go through all the parameters and log the gradient norm
for name, param in model.named_parameters():
if param.grad is not None:
self.extra_logs[f"grad_norm_{name}"] = torch.norm(param.grad.detach()).item()
if getattr(self.args, "log_train_input", False) and "flattened_patches" in inputs:
if not hasattr(self, "extra_logs"):
self.extra_logs = {}
images = [
flattened_patches_to_image(
inputs["flattened_patches"][i, :, 2:].detach().cpu().to(torch.float32),
height=self.args.height,
width=self.args.width,
patch_height=self.args.patch_height,
patch_width=self.args.patch_width,
image_mode=getattr(self.args, 'image_mode', 'RGB')
) for i in range(len(inputs["flattened_patches"]))
]
# We save those images on the disk, in a folder that is named by the step
# First create the folder (naming: step_rank)
# os.makedirs(f"image_logs/{self.state.global_step}_{dist.get_rank()}", exist_ok=True)
# # Save images
# for i in range(len(images)):
# images[i].save(f"image_logs/{self.state.global_step}_{dist.get_rank()}/{i}.png")
self.extra_logs["train_image_input"] = [wandb.Image(image) for image in images]
return loss.detach()
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
def _save_checkpoint(self, model, trial, metrics=None):
# In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
# want to save except FullyShardedDDP.
# assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
# Save model checkpoint
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
if self.hp_search_backend is None and trial is None:
self.store_flos()
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
self._original_save_checkpoint(model, trial, metrics=metrics)
def get_train_dataloader_for_streaming(self) -> DataLoader:
"""
Because streaming handles the distributed data parallel by itself, we don't need special data loader.
The plainest data loader is enough.
"""
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_dataset = self.train_dataset
data_collator = self.data_collator
data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
dataloader_params = {
"batch_size": self._train_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers, # Streaming dataset is probably not multi-thread safe
"pin_memory": self.args.dataloader_pin_memory,
}
# Streaming is iterable
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_train_sampler()
dataloader_params["drop_last"] = self.args.dataloader_drop_last
dataloader_params["worker_init_fn"] = seed_worker
# Instead of use accelerate to prepare the dataloader, we just return a plain dataloader
return DataLoader(train_dataset, **dataloader_params)
def get_eval_dataloader_for_streaming(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
"""
Because streaming handles the distributed data parallel by itself, we don't need special data loader.
The plainest data loader is enough.
"""
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
data_collator = self.data_collator
data_collator = self._get_collator_with_removed_columns(data_collator, description="evaluation")
dataloader_params = {
"batch_size": self.args.eval_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers, # Streaming dataset is probably not multi-thread safe
"pin_memory": self.args.dataloader_pin_memory,
}
# Streaming is iterable
if not isinstance(eval_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset)
dataloader_params["drop_last"] = self.args.dataloader_drop_last
# Instead of use accelerate to prepare the dataloader, we just return a plain dataloader
return DataLoader(eval_dataset, **dataloader_params)
def trainer_addon(trainer, seq2seq=False, streaming_dataset=False):
trainer._set_signature_columns_if_needed = _set_signature_columns_if_needed.__get__(trainer, Trainer)
# New
trainer.compute_loss = compute_loss_wrapper.__get__(trainer, Trainer)
trainer.log = log.__get__(trainer, Trainer)
trainer.create_scheduler = create_scheduler.__get__(trainer, Trainer)
trainer.training_step = training_step.__get__(trainer, Trainer)
trainer._original_save_checkpoint = trainer._save_checkpoint
trainer._save_checkpoint = _save_checkpoint.__get__(trainer, Trainer)
if streaming_dataset:
trainer.get_train_dataloader = get_train_dataloader_for_streaming.__get__(trainer, Trainer)
trainer.get_eval_dataloader = get_eval_dataloader_for_streaming.__get__(trainer, Trainer)
trainer.add_callback(SIGUSR1Callback())
if seq2seq:
trainer.prediction_step = prediction_step_seq2seq.__get__(trainer, Trainer)
trainer._pad_tensors_to_max_len = _pad_tensors_to_max_len.__get__(trainer, Trainer)
return trainer