-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
176 lines (143 loc) · 6.01 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import argparse
import time
from sklearn.metrics import confusion_matrix, classification_report
from tqdm.auto import tqdm
from typing import *
import torch
import torch.nn as nn
from utils.dataset import load_dataloader
from utils.plots import plot_results
from quantization.quantize import (
converting_quantization,
ptq_serving,
qat_serving,
fuse_modules,
print_size_of_model,
)
class_info = {
# foods
'beef': 0, 'chicken': 1, 'chicken_feet': 2, 'chicken_ribs': 3, 'dry_snacks': 4,
'dubu_kimchi': 5, 'ecliptic': 6, 'egg_roll': 7, 'fish_cake_soup': 8,
'french_fries': 9, 'gopchang': 10, 'hwachae': 11, 'jjambbong': 12,
'jjapageti': 13, 'korean_ramen': 14, 'lamb_skewers': 15, 'nacho': 16,
'nagasaki': 17, 'pizza': 18, 'pork_belly': 19, 'pork_feet': 20,
'raw_meat': 21, 'salmon': 22, 'sashimi': 23, 'shrimp_tempura': 24,
# drinks
'beer': 25, 'cass': 26, 'chamisul_fresh': 27, 'chamisul_origin': 28,
'chum_churum': 29, 'highball': 30, 'hite': 31, 'jinro': 32, 'kelly': 33,
'kloud': 34, 'ob': 35, 'saero': 36, 'soju': 37, 'tera': 38,
}
# score function
def score_fn(label, pred):
# print confusion matrix
print('### confusion matrix ###\n')
print(confusion_matrix(label, pred))
# print each score
each_score = classification_report(
label,
pred,
target_names=list(class_info.values()))
print('\n\n### each score ###\n')
print(each_score)
def test(
test_loader,
device,
model: nn.Module,
project_name: Optional[str]=None,
plot_result: bool=False,
):
if (project_name is None) and (not plot_result):
raise ValueError('define project name')
image_list, label_list, output_list = [], [], []
start = time.time()
model.eval()
model = model.to(device)
batch_acc = 0
with torch.no_grad():
for batch, (images, labels) in tqdm(enumerate(test_loader), total=len(test_loader)):
image_list.append(images)
label_list.append(labels.tolist())
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
outputs = outputs > 0.5
acc = (outputs == labels).float().mean()
batch_acc += acc.item()
print(f'{"="*20} Inference Time: {time.time()-start:.3f}s {"="*20}')
print(f'{"="*20} Test Average Accuracy {batch_acc/(batch+1)*100:.2f} {"="*20}')
score_fn(sum(label_list, []), sum(output_list, []))
def get_args_parser():
parser = argparse.ArgumentParser(description='Evaluating Model', add_help=False)
parser.add_argument('--data_path', type=str, required=True,
help='data directory for training')
parser.add_argument('--subset', type=str, default='valid',
help='dataset subset')
parser.add_argument('--model_name', type=str, required=True,
help='model name consisting of shufflenet, resnet18, resnet34 and resnet50')
parser.add_argument('--weight', type=str, required=True,
help='load trained model')
parser.add_argument('--img_size', type=int, default=224,
help='image resize size before applying cropping')
parser.add_argument('--num_workers', default=8, type=int,
help='number of workers in cpu')
parser.add_argument('--batch_size', default=32, type=int,
help='batch Size for training model')
parser.add_argument('--num_classes', type=int, default=39,
help='class number of dataset')
parser.add_argument('--project_name', type=str, default='prj',
help='create new folder named project name')
parser.add_argument('--quantization', type=str, default='none', choices=['none', 'qat', 'ptq'],
help='evaluate the performance of quantized model or float32 model when setting none')
parser.add_argument('--plot_result', action='store_true',
help='save the plotting result')
parser.add_argument('--device', type=str, choices=['cuda', 'cpu'], default='cpu',
help='set device for inference')
return parser
def main(args):
os.makedirs(f'./runs/test/{args.project_name}', exist_ok=True)
test_loader = load_dataloader(
path=args.data_path,
img_size=args.img_size,
subset=args.subset,
num_workers=args.num_workers,
batch_size=args.batch_size,
drop_last=False,
shuffle=True,
)
# setting device
device = torch.device(args.device)
q = True if args.quantization != 'none' else False
# load model
if args.model_name == 'shufflenet':
from models.shufflenet import ShuffleNetV2
model = ShuffleNetV2(num_classes=args.num_classes, pre_trained=False, quantize=q)
elif args.model_name == 'resnet18':
from models.resnet import resnet18
model = resnet18(num_classes=args.num_classes, pre_trained=False, quantize=q)
elif args.model_name == 'resnet34':
from models.resnet import resnet34
model = resnet34(num_classes=args.num_classes, pre_trained=False, quantize=q)
elif args.model_name == 'resnet50':
from models.resnet import resnet50
model = resnet50(num_classes=args.num_classes, pre_trained=False, quantize=q)
else:
raise ValueError(f'model name {args.model_name} does not exists.')
# quantization
if args.quantization == 'ptq':
model = ptq_serving(model=model, weight=args.weight)
elif args.quantization == 'qat':
model = qat_serving(model=model, weight=args.weight)
else: # 'none'
model.load_state_dict(torch.load(args.weight))
test(
test_loader,
device=device,
model=model,
project_name=args.project_name,
plot_result=args.plot_result,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser('Model testing', parents=[get_args_parser()])
args = parser.parse_args()
main(args)