layout | title | permalink |
---|---|---|
page |
PUBLICATION |
/publication/ |
My primary publication venues are computer science conferences in the areas of data management, systems, and others.
-
Kishu: Time-Traveling for Computational Notebooks
Zhaoheng Li, Supawit Chockchowwat, Areet Sheth, Ribhav Sahu, Yongjoo Park
PVLDB 2025 (research)
(pdf on arxiv) -
Demonstration of ElasticNotebook: Migrating Live Computational Notebook States
Zhaoheng Li, Supawit Chockchowwat, Hanxi Fang, Ribhav Sahu, Sumay Thakurdesai, Kantanat Pridaphatrakun, Yongjoo Park
SIGMOD 2024 (demo)
Awarded: Artifacts Available & Evaluated
(pdf on ACM) -
AirIndex: Versatile Index Tuning Through Data and Storage
Supawit Chockchowwat, Wenjie Liu, Yongjoo Park
SIGMOD 2024 (research)
(pdf on arxiv) (source code on GitHub) -
ElasticNotebook: Enabling Live Migration for Computational Notebooks
Zhaoheng Li, Pranav Gor, Rahul Prabhu, Hui Yu, Yuzhou Mao, Yongjoo Park
PVLDB 2023 (research)
(PVLDB) (pdf on arxiv) -
LADIO: Leakage-Aware Direct I/O for I/O-Intensive Workloads
Ipoom Jeong, Jiaqi Lou, Yongseok Son, Yongjoo Park, Yifan Yuan, and Nam Sung Kim
IEEE CAL 2023: IEEE Computer Architecture Letters (research)
(IEEE page) -
Transactional Python for Durable Machine Learning: Vision, Challenges, and Feasibility
Supawit Chockchowwat, Zhaoheng Li, Yongjoo Park
DEEM workshop @SIGMOD 2023 (research)
(pdf on arxiv) (DEEM website) -
Making Data Clouds Smarter at Keebo: Automated Warehouse Optimization using Data Learning
The Keebo Team
SIGMOD 2023 (industry)
(pdf on ACM) -
A Step Toward Deep Online Aggregation
Nikhil Sheoran*, Supawit Chockchowwat*, Arav Chheda, Suwen Wang, Riya Verma, Yongjoo Park
* indicates equal contributions
SIGMOD 2023 (research)
Awarded: Honorable Mention for Best Artifact
(pdf on arxiv) (on ACM) [(slides)]({{ site.url }}/resources/deepola-sigmod23-slides.pdf) -
S/C: Speeding up Data Materialization with Bounded Memory
Zhaoheng Li, Xinyu Pi, Yongjoo Park
ICDE 2023 (research)
(pdf on arxiv) (on IEEE) -
Automatically Finding Optimal Index Structure
Supawit Chockchowwat, Wenjie Liu, Yongjoo Park
AIDB workshop @VLDB 2022
(pdf) (AIDB website) -
The Effects of Teaching Modality on Collaborative Learning: A Controlled Study
Sophia Yang, Yongjoo Park, Abdussalam Alawini
IEEE Frontiers in Education Conference (FIE) 2022
(on IEEE) -
Airphant: Cloud-oriented Document Indexing
Supawit Chockchowwat, Chaitanya Sood, Yongjoo Park
ICDE 2022 (research)
(pdf on arxiv) (on IEEE) -
SAQE: Practical Privacy-Preserving Approximate Query Processing for Data Federations
Johes Bater, Yongjoo Park, Xi He, Xiao Wang, Jennie Rogers
PVLDB 2020 (research)
(pdf) -
QuickSel: Quick Selectivity Learning with Mixture Models
Yongjoo Park* , Shucheng Zhong*, Barzan Mozafari
SIGMOD 2020 (research)
[(pdf)]({{ site.url }}/resources/quicksel_sigmod20.pdf), (a longer version), (code)
* indicates equal contributions -
BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees
Yongjoo Park, Jingyi Qing, Xiaoyang Shen, Barzan Mozafari
SIGMOD 2019 (research)
[(pdf)]({{ site.url }}/resources/blinkml_sigmod19_pdf.pdf) -
VerdictDB: Universalizing Approximate Query Processing
Yongjoo Park, Barzan Mozafari, Joseph Sorenson, Junhao Wang
SIGMOD 2018 (research)
(pdf), (technical report), [(slides)]({{ site.url }}/resources/verdictdb_sigmod18.pdf), (project website), (GitHub repo) -
Demonstration of VerdictDB, the Platform-Independent AQP System
Wen He, Yongjoo Park, Idris Hanafi, Jacob Yatvitskiy, Barzan Mozafari
SIGMOD 2018 (demo)
(pdf) -
Database Learning: Toward a Database that Becomes Smarter Every Time
Yongjoo Park, Amhad Shahab Tajik, Michael Cafarella, Barzan Mozafari
SIGMOD 2017 (research)
(pdf), (technical report), [(slides)]({{ site.url }}/resources/db-learning-slides-sigmod17.pdf) -
[Active Database Learning]({{ site.url }}/resources/active-cidr17.pdf)
Yongjoo Park
CIDR 2017 (abstract)
[(pdf)]({{ site.url }}/resources/active-cidr17.pdf) -
[Visualization-Aware Sampling for Very Large Databases]({{ site.url }}/resources/ypark_icde16.pdf)
Yongjoo Park, Michael Cafarella, Barzan Mozafari
ICDE 2016 (research)
[(pdf)]({{ site.url }}/resources/ypark_icde16.pdf), (technical report), [(slides)]({{ site.url }}/resources/vas_slides_icde16.pdf), (demo), (code) -
Neighbor-Sensitive Hashing
Yongjoo Park, Michael Cafarella, Barzan Mozafari
PVLDB 2015 (research)
(pdf), [(supplementary document)]({{ site.url }}/resources/vldb2016sup.pdf), [(slides)]({{ site.url }}/resources/nsh-slides-vldb16.pdf), (code) -
Brainwash: A Data System for Feature Engineering
Michael Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher Ré, Ce Zhang
CIDR 2013 (vision)
(pdf)
-
Yongjoo Park, Barzan Mozafari, Joseph Sorenson, Junhao Wang
VerdictDB: Universalizing Approximate Query Processing -
Yongjoo Park, Amhad Shahab Tajik, Michael Cafarella, Barzan Mozafari
Database Learning: Toward a Database System that Becomes Smarter Over Time -
Yongjoo Park, Michael Cafarella, Barzan Mozafari
Neighbor-Sensitive Hashing -
Yongjoo Park, Michael Cafarella, Barzan Mozafari
Visualization-Aware Sampling for Very Large Databases
-
Yongjoo Park
Approximation is Bliss: Approximate Computing in Database Systems
Workshop on Approximate Computing Across the Stack (WAX) 2019, Phoenix, Arizona
Invited Talk, [(slides)]({{ site.url }}/resources/yongjoo_wax19.pdf) -
Yongjoo Park, Amhad Shahab Tajik, Michael Cafarella, Barzan Mozafari
Building Databases that Become Smarter over Time
Midwest Big Data Opportunities and Challenges (MBDOC) Workshop 2016, Chicago
[(slides)]({{ site.url }}/resources/dbl-slides-chicago.pdf) -
Yongjoo Park, Amhad Shahab Tajik, Michael Cafarella, Barzan Mozafari
Database Learning: Toward a Database System that Becomes Smarter Over Time
North East Database Day (NEDB) 2016, Oral, MIT
[(pdf)]({{ site.url }}/resources/ypark_nedb16.pdf), [(slides)]({{ site.url }}/resources/ypark_nedb16_slides.pdf) -
Yongjoo Park, Michael Cafarella, Barzan Mozafari
Neighbor-Sensitive Hashing
3rd Workshop on Web-scale Vision and Social Media (VSM) at ICCV 2015
Extended Abstract
- SIGMOD, Amsterdam, June 2019
- WAX workshop, Phoenix, June 2019
- Criteo NABD conference, Ann Arbor, May 2019
- University of Texas, Austin, April 2019
- Penn State University, State College, April 2019
- Purdue University, West Lafayette, April 2019
- Northeastern University, Boston, March 2019
- University of Waterloo, March 2019
- Georgia Tech, Atlanta, March 2019
- University of Illinois, Urbana-Champaign, March 2019
- Microsoft Research, Redmond, February 2019
- Northwestern University, Redmond, February 2019
- Microsoft, Redmond, February 2019
- IBM Research, Almaden, February 2019
- SIGMOD, Houstin, June 2018
- AVL (www.avl.com), Ann Arbor, April 2018
- Oracle BI Group, Redwood City, December 2017
- ACAIA workshop, San Jose, November 2017
- Oracle Database Group, Redwood City, November 2017
- Cloudera Impala Team, Palo Alto, November 2017
- Big Data Innovation Summit, Boston, Septempber 2017
- New Tech Meetup, Ann Arbor, July 2017
- SIGMOD, Chicago, May 2017
- University of Michigan Software Group, Ann Arbor, May 2017
- Brown Database Group, Providence, March 2017
- Stanford InfoLab, Palo Alto, February 2017
- CIDR, Chaminade, California, January 2017
- MBDOC, Chicago, September 2016
- VLDB, New Delhi, India, September 2016
- ICDE, Helsinki, Finland, May 2016
- AVL (www.avl.com), Ann Arbor, April 2016
- NEDB, Boston, January 2016
- VSM@ICCV, Santiago, Chile, December 2015