-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy path10-Position_scales_and_axes.Rmd
709 lines (507 loc) · 21.1 KB
/
10-Position_scales_and_axes.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
# (PART\*) Scales {-}
# Position scales and axes
**Learning Objectives**
- What are the defining components of a scale?
- When/why does the data need to be transformed for a visualization?
- What are the defining components of an axis?
- What is the relationship between scale and axis?
```{r 10-01, warning=FALSE, message=FALSE}
library(ggplot2)
library(dplyr)
library(stringr) # for demo of labels and some other stuff
```
## Preliminaries / asides {-}
- This chapter introduces position scales and axes or guides.
- Recommended: read documentations of the `{scales}` package, since that handles a lot of the (re-)scaling and transformation under the hood.
- Start with [rstudio::conf2020 talk on scales](https://www.rstudio.com/resources/rstudioconf-2020/the-little-package-that-could-taking-visualizations-to-the-next-level-with-the-scales-package/).
- It should also be noted that there's some discussion about revamping the `scales_*` API. See [issue #4269](https://github.com/tidyverse/ggplot2/issues/4269) and [PR #4271](https://github.com/tidyverse/ggplot2/pull/4271)
## Introduction {-}
- Position scales control the locations of visual entities in a plot and how those locations are mapped to data values.
- usually x- and y-axis
- However, some plots require that you specify only one axis: `geom_histogram()` which computes a `count` variables that gets mapped into the y aesthetic.
```{r, warning=FALSE, message=FALSE, fig.align='center'}
ggplot(mpg,
aes(x = displ)) + # only specifies x-axis but not y-axis
geom_histogram()
```
## Themes to discuss {-}
- Here we will discuss
- Continuous position scales, including transformations and zooming in and out of a plot.
- Date/time scales, which is a special case of a continous scale.
- Discrete position scales, including limits, breaks, and labels, and axis label customisation.
- Binned position scales.
## Numeric position scales {-}
- `scale_x_continous()`
- `scale_y_continous()`
- Both map linearly from the data value to a location on the plot.
- The limits should be a numeric vector of length two, or numeric value and NA.
- Other scales used for transformations:
- `scale_x_log10()`
- `scale_x_reverse()`
## Numeric position scales: Limits {-}
- All scales have limits that specify the values of the aesthetic over which the scale is defined: ranges of the axes.
- By default, limits are calculated from the range of the data variable, but this can be bypassed with the `limits` argument in the `scale()` function.
```{r 10-04}
lim_plot <- ggplot(mtcars, aes(x = hp, y = disp)) +
geom_point()
lim_plot
lim_plot +
xlim(0, 500)
# NA to use range of data
lim_plot +
xlim(0, NA)
# Same thing
lim_plot +
scale_x_continuous(limits = c(0, NA))
```
- Alternatively, you can also use `lims()`.
- Or just `xlim()` or `ylim()`
```{r}
lim_plot +
lims(x = c(0,500),
y = c(0,500))
# Specifying just one axis
lim_plot +
xlim(c(0,500))
```
## Zooming in {-}
- If your goal is to zoom in on part of the plot, it is usually better to use the `xlim()` and `ylim()` arguments of `coord_cartesian()`.
- when you truncate the scale limits, some data points will fall outside the boundaries you set, and ggplot2 has to make a decision about what to do with these data points. The default behavior in ggplot2 is to convert any data values outside the scale limits to NA.
```{r, fig.align='center'}
base <- ggplot(mpg, aes(drv, hwy)) +
geom_hline(yintercept = 28, colour = "red") +
geom_boxplot()
# Base plot
base
# Zoom in with coord_cartesian() works well!
base + coord_cartesian(ylim = c(10, 35)) # works as expected
# Zoom in with ylim() does not work well, look at the red line how it has moved.
# The boxplot is not the same
base + ylim(10, 35) # distorts the boxplot
#> Warning: Removed 6 rows containing non-finite values (`stat_boxplot()`).
```
## Visual range expansion {-}
- The visual range of the axes actually extends a little bit past the numeric limits that we have specified.
- Override the defaults setting with `expand()` argument wich expects a numeric vector.
- For example, one case where it’s usually preferable to remove this space is when using geom_raster(), which we can achieve by setting `expand = expansion(0)`:
```{r 10-10}
f_plot <- ggplot(faithfuld, aes(waiting, eruptions)) +
geom_raster(aes(fill = density)) +
theme(legend.position = "none")
f_plot
f_plot +
scale_x_continuous(expand = c(0,0)) + # expand = 0
scale_y_continuous(expand = c(0,0)) # expand = 0
```
- `expand` argument: For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function expansion() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.
- With `expansion()`.
- Additive factor: specifies a constant space added to outside of the nominal axis limits.
- Multiplicative factor: adds space defined as a proportion of the size of the axis limit.
- These correspond to the add and mult arguments to expansion(), which can be length one (if the expansion is the same on both sides) or length two (to set different expansions on each side).
- The `add` argument is specified on the same scale as the data variable, whereas the `mult` argument is specified relative to the axis range.
```{r 10-11}
formals(expansion)
```
```{r }
# Additive expansion of three units on both axes
f_plot +
scale_x_continuous(expand = expansion(add = 3)) +
scale_y_continuous(expand = expansion(add = 3))
# Multiplicative expansion of 20% on both axes
f_plot +
scale_x_continuous(expand = expansion(mult = .2)) +
scale_y_continuous(expand = expansion(mult = .2))
# Multiplicative expansion of 5% at the lower end of each axes,
# and 20% at the upper end; for the y-axis the expansion is
# set directly instead of using expansion()
f_plot +
scale_x_continuous(expand = expansion(mult = c(.05, .2))) +
scale_y_continuous(expand = c(.05, 0, .2, 0))
```
## Breaks {-}
- Axis tick marks and legend tick marks are special cases of scale breaks -> `breaks` argument in the `scale_*()` function.
- Let's see an example:
```{r 10-14}
toy <- data.frame(
const = 1,
up = 1:4,
txt = letters[1:4],
big = (1:4)*1000,
log = c(2, 5, 10, 2000)
)
toy
```
- To set breaks manually, pass a vector of data values to `breaks` or set `breaks = NULL` to remove them and the corresponding tick marks.
```{r}
axs <- ggplot(toy, aes(big, const)) +
geom_point() +
labs(x = NULL, y = NULL)
axs
axs + scale_x_continuous(breaks = NULL)
```
- Grid lines move along with breaks
```{r}
axs + scale_x_continuous(breaks = c(1000, 2000, 4000))
axs + scale_x_continuous(breaks = c(1000, 1500, 2000, 4000))
```
- You can pass a function to the argument `breaks`, but the package `scales` has several break functions that can help tweak the breaks:
- `scales::breaks_extended()` creates automatic breaks for numeric axes.
- `scales::breaks_log()` creates breaks appropriate for log axes.
- `scales::breaks_pretty()` creates “pretty” breaks for date/times.
- `scales::breaks_width()` creates equally spaced breaks.
Other breaks:
```{r 10-17}
axs +
scale_x_continuous(breaks = scales::breaks_extended())
axs +
scale_x_continuous(breaks = scales::breaks_extended(n = 2))
```
- With the `scales::breaks_width()` function you can define the spacing between breaks.
- `width` sets the distance between each break. Number or time/date in a single string in the form "{n} {unit}", e.g., "1 month", "4 sec".
- `offset` use if you don't want breaks to start at zero, or on a conventional date or time boundary such as the 1st of January or midnight. A negative number for offset will specify a new starting point with an offset away from the original one.
```{r}
axs +
scale_x_continuous(breaks = scales::breaks_width(500))
# The offset shifts all the breaks by a specified amount
axs +
scale_x_continuous(breaks = scales::breaks_width(500, offset = 100))
axs +
scale_x_continuous(breaks = scales::breaks_width(500, offset = -100))
```
## Minor breaks {-}
- You can adjust the minor breaks (the unlabeled faint grid lines that appear between the major grid lines).
- You can also supply a function to `minor_breaks`, such as `scales::minor_breaks_n()` or `scales::minor_breaks_width()`
- First let's create a vector of minor break values.
```{r 10-19}
#%o% generates a multiplication table
mb <- unique(as.numeric(1:10 %o% 10 ^ (0:3)))
mb
```
- Now let's create a plot:
```{r}
log_base <- ggplot(toy,
aes(log, const)) + geom_point()
log_base
# Transforming x-axis to log10
log_base + scale_x_log10()
log_base + scale_x_log10(breaks = c(0, 2, 5, 10, 50, 100, 500, 1000, 2000)) #major breaks
# Using my previous vector mb
log_base + scale_x_log10(minor_breaks = mb) # minor breaks
```
## Labels {-}
- Every break is associated with a label, and labels can be changed.
- You can supress lables with `labels = NULL`
- Let's see an example:
```{r}
base <- ggplot(toy, aes(big, const)) +
geom_point() +
labs(x = NULL, y = NULL) +
scale_y_continuous(breaks = NULL)
base
base +
scale_x_continuous(
breaks = c(2000, 4000),
labels = c("2k", "4k")) # specify the labels for each break
```
- Label functions that are useful from the `scales` package are:
- `scales::label_bytes()` formats numbers as kilobytes, megabytes etc.
- `scales::label_comma()` formats numbers as decimals with commas added.
- `scales::label_dollar()` formats numbers as currency.
- `scales::label_ordinal()` formats numbers in rank order: 1st, 2nd, 3rd etc.
- `scales::label_percent()` formats numbers as percentages.
- `scales::label_pvalue()` formats numbers as p-values: <.05, <.01, .34, etc.
```{r}
base <- ggplot(toy, aes(big, const)) +
geom_point() +
labs(x = NULL, y = NULL) +
scale_x_continuous(breaks = NULL)
base
base + scale_y_continuous(labels = scales::label_percent(accuracy = 0))
base + scale_y_continuous(labels = scales::label_percent(accuracy = 0.5))
base + scale_y_continuous(
labels = scales::label_dollar(prefix = "", suffix = "€")
)
```
## Transformations {-}
- Several scale transformation functions that work on the x- or y-axis.
- All of these transformations do not affect the data, they just modify the axes.
```{r}
base <- ggplot(mpg, aes(displ, hwy)) + geom_point()
base
base + scale_x_reverse()
base + scale_y_reverse()
```
- Every continuous scale takes a `transform` argument allowing for using transformations:
```{r}
# convert from fuel economy to fuel consumption
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
scale_y_continuous(transform = "reciprocal")
# log transform x and y axes
ggplot(diamonds, aes(price, carat)) +
geom_bin2d() +
scale_x_continuous(transform = "log10") +
scale_y_continuous(transform = "log10")
```
- You can construct your own transform by using `scales::new_transform`
- The following table lists some of the more common variants:
| Name | Transformer | Function $f(x)$ | Inverse $f^{-1}(x)$ |
|----------------|----------------------------------|-------------------------|----------------------|
| `"asn"` | `scales::transform_asn` | $\tanh^{-1}(x)$ | $\tanh(y)$ |
| `"exp"` | `scales::transform_exp ()` | $e ^ x$ | $\log(y)$ |
| `"identity"` | `scales::transform_identity()` | $x$ | $y$ |
| `"log"` | `scales::transform_log()` | $\log(x)$ | $e ^ y$ |
| `"log10"` | `scales::transform_log10()` | $\log_{10}(x)$ | $10 ^ y$ |
| `"log2"` | `scales::transform_log2()` | $\log_2(x)$ | $2 ^ y$ |
| `"logit"` | `scales::transform_logit()` | $\log(\frac{x}{1 - x})$ | $\frac{1}{1 + e(y)}$ |
| `"probit"` | `scales::transform_probit()` | $\Phi(x)$ | $\Phi^{-1}(y)$ |
| `"reciprocal"` | `scales::transform_reciprocal()` | $x^{-1}$ | $y^{-1}$ |
| `"reverse"` | `scales::transform_reverse()` | $-x$ | $-y$ |
| `"sqrt"` | `scales::scale_x_sqrt()` | $x^{1/2}$ | $y ^ 2$ |
- Let's see an example:
```{r}
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
scale_y_continuous(transform = "reciprocal")
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
scale_y_continuous(transform = scales::transform_reciprocal())
```
- Remember you can transform the data manually first and opt not to do the transformation on the axes.
- The appearance of the geom will be the same, but the tick labels will be different.
- If you transform the data, the axes will be labelled in the transformed space.
- If you use a transformed scale, the axes will be labelled in the original data space.
- **Regardless of which method you use, the transformation occurs before any statistical summaries. To transform after statistical computation use `coord_trans()`.**
```{r}
# Original data
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
labs(title = "Untransformed data or axes")
# manual transformation
ggplot(mpg, aes(log10(displ), hwy)) +
geom_point() +
labs(title = "Data transformed first")
# transform using scales
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
scale_x_log10() +
labs(title = "Transformation applied to x-axis")
```
## Date-time {-}
- Assuming you have appropriately formatted data mapped to the x aesthetic, ggplot2 will use `scale_x_date()` as the default scale for dates and `scale_x_datetime()` as the default scale for date-time data.
- We've seen a few useful transformations througout like: `scales::breaks_pretty()` which creates “pretty” breaks for date/times.
## Breaks {-}
- The `date_breaks` argument allows you to position breaks by date units (years, months, weeks, days, hours, minutes, and seconds).
```{r 10-35}
#| layout-ncol: 2
date_base <- ggplot(economics, aes(date, psavert)) +
geom_line(na.rm = TRUE) +
labs(x = NULL, y = NULL)
date_base
date_base + scale_x_date(date_breaks = "15 years")
```
- Remember you can also set `width` and `offset`: "1 month"
## Labels {-}
- The book recommends using `date_labels` argument.
| String | Meaning |
|:-------|:-----------------------------------|
| `%S` | second (00-59) |
| `%M` | minute (00-59) |
| `%l` | hour, in 12-hour clock (1-12) |
| `%I` | hour, in 12-hour clock (01-12) |
| `%p` | am/pm |
| `%H` | hour, in 24-hour clock (00-23) |
| `%a` | day of week, abbreviated (Mon-Sun) |
| `%A` | day of week, full (Monday-Sunday) |
| `%e` | day of month (1-31) |
| `%d` | day of month (01-31) |
| `%m` | month, numeric (01-12) |
| `%b` | month, abbreviated (Jan-Dec) |
| `%B` | month, full (January-December) |
| `%y` | year, without century (00-99) |
| `%Y` | year, with century (0000-9999) |
```{r}
#| layout-ncol: 2
base <- ggplot(economics, aes(date, psavert)) +
geom_line(na.rm = TRUE) +
labs(x = NULL, y = NULL)
base + scale_x_date(date_breaks = "5 years")
base + scale_x_date(date_breaks = "5 years", date_labels = "%y")
```
- Remember you can include a line break character `\n`
```{r}
#| layout-ncol: 2
lim <- as.Date(c("2004-01-01", "2005-01-01"))
base + scale_x_date(limits = lim, date_labels = "%b %y")
base + scale_x_date(limits = lim, date_labels = "%B\n%Y")
```
## Discrete position scales {-}
- `scale_x_discrete()` and `scale_y_discrete()`
```{r 10-44}
#| layout-ncol: 3
ggplot(mpg, aes(x = hwy, y = class)) +
geom_point()
ggplot(mpg, aes(x = hwy, y = class)) +
geom_point() +
scale_x_continuous() +
scale_y_discrete()
ggplot(mpg, aes(x = hwy, y = class)) +
geom_point() +
annotate("text", color = "blue", x = 5, y = 1:7, label = 1:7)
```
## Limits, breaks, labels {-}
> For discrete scales, limits should be a character vector that enumerates all possible values.
- Limits
```{r}
base <- ggplot(toy, aes(const, txt)) +
geom_label(aes(label = txt)) +
scale_x_continuous(breaks = NULL) +
labs(x = NULL, y = NULL)
base
base + scale_y_discrete(limits = c("a", "b", "c", "d", "e"))
base + scale_y_discrete(limits = c("d", "c", "a", "b"))
```
- breaks
```{r}
base + scale_y_discrete(breaks = c("b", "c"))
base + scale_y_discrete(labels = c(c = "carrot", b = "banana"))
```
- Label positions. It's common to have to prevent labels from overlapping.
```{r}
base <- ggplot(mpg, aes(manufacturer, hwy)) + geom_boxplot()
base
base + guides(x = guide_axis(n.dodge = 3))
base + guides(x = guide_axis(angle = 90))
```
## ASIDE - `geom_sf()` + limits {-}
### Example from Twitter: {-}
[https://twitter.com/Josh_Ebner/status/1470818469801299970?s=20](https://twitter.com/Josh_Ebner/status/1470818469801299970?s=20)
### Reprexes from Ryan S: {-}
```{r 10-57}
library(sf)
plygn_1 <- tibble(x_coord = c(1, 1, 2, 3, 6, 1),
y_coord = c(1, 2, 1, 2, 5, 1))
plygn_1
```
Full range polygon
```{r 10-58}
plygn_1 %>%
ggplot() +
geom_polygon(aes(x_coord, y_coord))
```
Polygon with limits
```{r 10-59}
poly_plygn_1 <- plygn_1 %>%
ggplot() +
geom_polygon(aes(x_coord, y_coord)) +
scale_x_continuous(limits = c(1, 4))
poly_plygn_1
```
Path with limits
```{r 10-60}
path_plygn_1 <- plygn_1 %>%
ggplot() +
geom_path(aes(x_coord, y_coord)) +
scale_x_continuous(limits = c(1, 4))
path_plygn_1
```
`geom_sf()` without limits
```{r 10-61}
sf_plygn_1 <- plygn_1 %>% # tibble of coords
as.matrix() %>% # make into a matrix
list() %>% # make into a list
st_polygon() %>% # make into sf object
ggplot() + # call ggplot
geom_sf() # use geom_sf for plotting sf objects
sf_plygn_1
```
`geom_sf()` with limits
```{r 10-62}
sf_plygn_1_wlims <- sf_plygn_1 +
scale_x_continuous(limits = c(1, 4)) # add limits
sf_plygn_1_wlims
```
### Further exploration {-}
Using `geom_sf()` adds `CoordSF` by default
```{r 10-63}
class(sf_plygn_1$coordinates)
class(sf_plygn_1_wlims$coordinates)
```
In fact, `geom_sf()` must be used with `coord_sf()`
```{r 10-64, error = TRUE}
# Same thing as without limits `sf_plygn_1`
sf_plygn_1 +
coord_sf()
# Same thing as with limits `sf_plygn_1_wlims`
sf_plygn_1 +
coord_sf(xlim = c(1, 4))
# Doesn't work
sf_plygn_1 +
coord_cartesian()
```
The underlying geometry is untouched (indicating that limits are not removing data)
```{r 10-65}
layer_data(sf_plygn_1)
layer_data(sf_plygn_1_wlims)
identical(
layer_data(sf_plygn_1_wlims)$geometry,
layer_data(sf_plygn_1)$geometry
)
```
OOB handling inside `scale_x|y_continuous()` cannot override the behavior
```{r 10-66}
sf_plygn_1 +
scale_x_continuous(limits = c(1, 4), oob = scales::oob_censor)
```
Instead, `coord_sf(lims_method = )` offers other spatial-specific methods. Censor doesn't seem to be one but an option like `"geometry_bbox"` automatically sets limits to the smallest bounding box that contain all geometries.
```{r 10-67}
sf_plygn_1 +
coord_sf(lims_method = "geometry_bbox")
sf_plygn_1_wlims +
coord_sf(lims_method = "geometry_bbox")
```
Interesting note from the [docs](https://ggplot2.tidyverse.org/reference/ggsf.html#arguments):
> ... specifying limits via position scales or xlim()/ylim() is strongly discouraged, as it can result in data points being dropped from the plot even though they would be visible in the final plot region.
### Internals {-}
```{r 10-68}
library(ggtrace) # v.0.4.5
```
Scale censor for `geom_polygon()`
```{r 10-69, eval = FALSE}
ggbody(ggplot2:::ggplot_build.ggplot)[[17]]
ggtrace(
method = ggplot2:::ggplot_build.ggplot,
trace_steps = 17,
trace_exprs = quote(browser()),
verbose = FALSE
)
path_plygn_1
```
Scale censor for `geom_sf()`
```{r 10-70, eval = FALSE}
ggtrace(
method = ggplot2:::ggplot_build.ggplot,
trace_steps = 17, # and 26 `layout$map_position`
trace_exprs = quote(browser()),
verbose = FALSE
)
sf_plygn_1_wlims
```
Inspecting the rendered geom with `layer_grob()`
```{r 10-71}
patchwork::wrap_elements(layer_grob(poly_plygn_1)[[1]])
patchwork::wrap_elements(layer_grob(sf_plygn_1)[[1]])
patchwork::wrap_elements(layer_grob(sf_plygn_1_wlims)[[1]])
dplyr::bind_cols(layer_grob(sf_plygn_1)[[1]][c("x", "y")])
dplyr::bind_cols(layer_grob(sf_plygn_1_wlims)[[1]][c("x", "y")]) # x for fifth row is >1npc
```
## Meeting Videos {-}
### Cohort 1
`r knitr::include_url("https://www.youtube.com/embed/EvKchS3X6cg")`
`r knitr::include_url("https://www.youtube.com/embed/LSkVSJasHPY")`
<details>
<summary> Meeting chat log </summary>
```
00:59:06 June Choe: There's also a nice animation from wikipedia (the cylinder is squished because of perceptual inequality between hues) - https://upload.wikimedia.org/wikipedia/commons/transcoded/8/8d/SRGB_gamut_within_CIELCHuv_color_space_mesh.webm/SRGB_gamut_within_CIELCHuv_color_space_mesh.webm.480p.vp9.webm
```
</details>