-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy path15-Coordinate-systems.Rmd
266 lines (181 loc) · 6.88 KB
/
15-Coordinate-systems.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Coordinate systems
**Learning objectives:**
- What are `coord_<functions>` ?
- What are the differences between `coord_<functions>` in {ggplot2} ?
- How to use **coordinate systems** in {ggplot2}
## Introduction
The coordinate system in {ggplot2} can be managed with the use of `coord_<functions>`. This is done when we need to:
- zoom into a plot in a particular area of the plot
- flip the axis of a plot
- set a fixed aspect ratio of a plot
- transform coordinates
- change the shape of the plot
- set the coordinates for a map projection
```{r ch16-01, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,message=FALSE, warning=FALSE, paged.print=FALSE,comment = "")
```
```{r ch16-02}
library(tidyverse)
library(patchwork)
iris %>% head()
```
## Linear coordinate systems
- `coord_cartesian()`: the default Cartesian coordinate system, where the 2d position of an element is given by the combination of the x and y positions.
- `coord_flip()`: Cartesian coordinate system with x and y axes flipped.
- `coord_fixed()`: Cartesian coordinate system with a fixed aspect ratio.
----------
1. `coord_cartesian()`
```{r ch16-03}
p1 <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) +
geom_point(aes(fill=Species),
show.legend = F,
shape=21,color="grey20",alpha=0.5) +
geom_smooth(color="pink") +
theme_light()
p1 | p1 + scale_x_continuous(limits = c(5, 6)) | p1 + coord_cartesian(xlim = c(5, 6))
```
2. `coord_flip()`
```{r ch16-04}
p2 <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) +
geom_point(aes(fill=Species),
show.legend = F,
shape=21,color="grey20",alpha=0.5) +
geom_smooth(color="pink") +
theme_light()
p3 <- ggplot(iris, aes(Sepal.Width,Sepal.Length)) +
geom_point(aes(fill=Species),
show.legend = F,
shape=21,color="grey20",alpha=0.5) +
geom_smooth(color="pink") +
theme_light()
p2 | p2 + coord_flip() | p3
```
(the smooth is fit to the rotated data).
3. `coord_fixed()`
```{r ch16-05}
p3 | p3 + coord_fixed()
```
## Non-linear coordinate systems
- `coord_polar()`: Polar coordinates.
- `coord_map()`/`coord_quickmap()`/`coord_sf()`: Map projections.
- `coord_trans()`: Apply arbitrary transformations to x and y positions, after the data has been processed by the stat.
---------
1. `coord_polar()`
```{r ch16-06}
p4 <- iris %>%
ggplot(aes(x = Species, y = Petal.Width)) +
geom_col(aes(color=Species,fill=Species),show.legend = F)+
theme_light()
p4 + coord_polar(theta = "x") | p4 + coord_polar(theta = "y")
```
### Example: Coord_polar() with DuBoisChallenge N°8 data
source: [DuBois data portraits](https://github.com/ajstarks/dubois-data-portraits/tree/master/challenge/2022)
```{r ch16-07}
df <- read_csv("https://raw.githubusercontent.com/ajstarks/dubois-data-portraits/master/challenge/2022/challenge08/data.csv")
df2 <- df %>%
arrange(-Year)
df2[7,1] <- 1875
df2[7,2] <- 0
df2[7,3] <- 0
```
```{r ch16-08,fig.align='center',fig.dim="100%"}
df2 %>%
ggplot() +
geom_line(data= subset(df2, Year %in% c(1875,1875)),
mapping = aes(x=Year, y= `Houshold Value (Dollars)`),
color="#FFCDCB",size=6) +
geom_line(data= subset(df2, Year%in%c(1875,1875,1880)),
mapping= aes(x=Year +2, y= `Houshold Value (Dollars)`),
color="#989EB4",size=6) +
geom_line(data= subset(df2, Year%in%c(1875,1875,1880,1885)),
mapping= aes(x=Year +4, y= `Houshold Value (Dollars)`),
color="#b08c71",size=6) +
geom_line(data= subset(df2, Year%in%c(1875,1875,1880,1885,1890)),
mapping= aes(x=Year +6, y= `Houshold Value (Dollars)`),
color="#FFC942",size=6) +
geom_line(data= subset(df2, Year%in%c(1875,1875,1880,1885,1890,1895)),
mapping= aes(x=Year +8, y= `Houshold Value (Dollars)`),
color="#EFDECC", size=6) +
geom_line(mapping= aes(x=Year +10, y= `Houshold Value (Dollars)`),
color="#F02C49",size=6) +
coord_polar(theta = "y",
start = 0,
direction = 1,
clip = "off") +
# other scales that can be used:
#scale_x_reverse(expand=expansion(mult=c(-0.9,-0.1),add=c(29,-0.1))) +
#scale_y_continuous(expand=expansion(mult=c(0.09,0.01),add=c(0,-790000))) +
scale_x_reverse(expand=expansion(add=c(11,-5))) +
scale_y_continuous(expand=expansion(add=c(0,-600000))) +
labs(title="ASSESSED VALUE OF HOUSEHOLD AND KITCHEN FURNITURE
OWNED BY GEORGIA NEGROES.")+
theme_void() +
theme(text = element_text(face="bold",
color="grey27"),
aspect.ratio =2/1.9, #y/x
plot.background = element_rect(color= "#d9ccbf", fill= "#d9ccbf"),
plot.title = element_text(hjust=0.5,size=9))
```
2. `coord_trans()`
```{r ch16-09}
rect <- data.frame(x = 50, y = 50)
line <- data.frame(x = c(1, 200), y = c(100, 1))
p6 <- ggplot(mapping = aes(x, y)) +
geom_tile(data = rect, aes(width = 50, height = 50)) +
geom_line(data = line) +
xlab(NULL) + ylab(NULL)
p6
```
```{r ch16-10}
p6 + coord_trans(y = "log10")
```
```{r ch16-11}
p7 <- ggplot(iris, aes(Sepal.Length, Petal.Length)) +
stat_bin2d() +
geom_smooth(method = "lm") +
xlab(NULL) +
ylab(NULL) +
theme(legend.position = "none")
p7
#> `geom_smooth()` using formula 'y ~ x'
# Better fit on log scale, but harder to interpret
p7 +
scale_x_log10() +
scale_y_log10()
#> `geom_smooth()` using formula 'y ~ x'
# Fit on log scale, then backtransform to original.
# Highlights lack of expensive diamonds with large carats
pow10 <- scales::exp_trans(10)
p7 +
scale_x_log10() +
scale_y_log10() +
coord_trans(x = pow10, y = pow10)
```
3. `coord_map()`/`coord_quickmap()`/`coord_sf()`
```{r ch16-12}
world <- map_data("world")
worldmap <- ggplot(world, aes(long, lat, group = group)) +
geom_path() +
scale_y_continuous(NULL, breaks = (-2:3) * 30, labels = NULL) +
scale_x_continuous(NULL, breaks = (-4:4) * 45, labels = NULL)
worldmap + coord_quickmap() |
worldmap + coord_map("ortho") |
worldmap + coord_map("stereographic")
```
## Meeting Videos
### Cohort 1
`r knitr::include_url("https://www.youtube.com/embed/J8JEDPvv660")`
<details>
<summary> Meeting chat log </summary>
```
00:08:33 June Choe: hi all :)
00:08:50 Federica Gazzelloni: Hi
00:09:48 June Choe: yeah I think folks can catch up on youtube maybe
00:28:00 June Choe: thats very neat - didn't know you could "squish" the polar-transformed shapes with scale expansion
00:38:32 June Choe: An interesting discussion for coord_polar on twitter - https://twitter.com/mattansb/status/1506620436771229715?s=20&t=I4IebpuwA_ZxDwzA4BqqwQ
00:38:45 June Choe: I was in an exchange with @mattansb on how to "crop" polar coordinate plots
00:39:15 June Choe: this was his solution, and I find it quite nice - https://mattansb.github.io/MSBMisc/reference/crop_coord_polar.html
00:40:30 June Choe: this was great - thank you!
00:41:03 June Choe: sounds good!
```
</details>