-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path3D-qhull.py
135 lines (109 loc) · 4.36 KB
/
3D-qhull.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from __future__ import absolute_import
# Pydrake imports
import pydrake
import numpy as np
from pydrake.solvers import mathematicalprogram as mp
from pydrake.solvers.gurobi import GurobiSolver
import pydrake.symbolic as sym
# Pyplot to plot footsteps
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from mpl_toolkits.mplot3d import Axes3D
# Convex Hull function
from scipy.spatial import ConvexHull
# Make numpy round printed values
np.set_printoptions(suppress=True)
# image-id generator
import sys
import os
import string
import random
def id_gen(dim, size=6, chars=string.ascii_uppercase+string.digits):
dir_path = os.path.dirname(os.path.realpath(__file__))
results_dir = os.path.join(dir_path, 'images/')
file_name = str(dim) + 'D-' + ''.join(random.choice(chars) for _ in range(size)) + '.png'
if not os.path.isdir(results_dir):
os.makedirs(results_dir)
return results_dir + file_name
def normalize(v):
mag = np.linalg.norm(v)
if(mag==0):
return v
return v/mag
if __name__ == '__main__':
# ********* SET DIMENSIONS, PARAMETERS *********
# Set dimensions, number of regions
dim = 3
num_regions = 3
# ********* CREATE REGIONS OF INTEREST *********
# Create H-representations of random tetrahedral regions
chulls = []
A = []
b = []
for j in range(num_regions):
# print("Region " + str(j) + ":")
# Create random vertices and the convex hull
temp = np.zeros(dim)
temp[0] += j # offset for regions
pts = ConvexHull(np.random.rand(4, dim) + temp) # generate the vertices and convex hull
# print("TEST***")
# print(pts.simplices)
# Save full qhull object
chulls.append(pts)
# Extract the H-representation
A.append(np.delete(pts.equations, pts.equations.shape[1]-1, 1))
b.append(-1*pts.equations[:,pts.equations.shape[1]-1])
# Create bounds on x
x_lb = 0
x_ub = num_regions + 2
# Create goal point
x_goal = np.array([1.5]*dim) # Not inside any of the regions
x_goal[0] = num_regions/2+1 # In the middle of the random regions (x-dim)
# ********* SOLVE PROBLEM *********
# Create optimization problem
prog = mp.MathematicalProgram()
# Create variables
x = prog.NewContinuousVariables(dim, "x") # variable point
for i in range(dim):
prog.AddLinearConstraint(x_lb<=x[i]<=x_ub)
z = prog.NewBinaryVariables(num_regions, "z") # Integer variables that represent the region the point will be in
prog.AddLinearConstraint(np.sum(z) == 1) # only one is set
# Create M (TODO: calculate this value)
M = 100
# Constrain the points to the regions
for i in range(num_regions):
for j in range(A[i].shape[0]):
prog.AddLinearConstraint(A[i][j][0]*x[0]+A[i][j][1]*x[1]+A[i][j][2]*x[2] + M*z[i] <= b[i][j] + M)
# Add objective
prog.AddQuadraticCost((x[0]-x_goal[0])**2 + (x[1]-x_goal[1])**2 + (x[2]-x_goal[2])**2) # distance of x to the goal point
# Solve problem
solver = GurobiSolver()
assert(solver.available())
assert(solver.solver_type()==mp.SolverType.kGurobi)
result = solver.Solve(prog)
assert(result == mp.SolutionResult.kSolutionFound)
print("Goal: " + str(x_goal))
finalx = prog.GetSolution(x)
print("Final Solution: " + str(finalx))
# ********* GRAPH PROBLEM *********
# Create figure
fig = plt.figure(1, (20, 10))
ax = fig.add_subplot(111, projection='3d')
plt.title("Minimize distance of point within " + str(num_regions) + " " + str(dim) + "-D Polytopes to Goal Point")
# Plot regions
for j in range(num_regions):
print("Region " + str(j))
for simplex in chulls[j].simplices:
print(simplex)
print(chulls[j].points[simplex])
for i in range(len(simplex)):
cur = simplex[i]
n = simplex[(i+1)%(len(simplex))]
plt.plot([chulls[j].points[cur][0], chulls[j].points[n][0]], [chulls[j].points[cur][1], chulls[j].points[n][1]], [chulls[j].points[cur][2], chulls[j].points[n][2]], 'b')
plt.plot([finalx[0]], [finalx[1]], [finalx[2]], 'g*', markersize=15, markerfacecolor='g') # solution
ax.text(finalx[0], finalx[1], finalx[2], "SOL: (" + str(round(finalx[0], 3)) + ", " + str(round(finalx[1], 3)) + ", " + str(round(finalx[2], 3)) + ")")
plt.plot([x_goal[0]], [x_goal[1]], [x_goal[2]], 'r*', markersize=15, markerfacecolor='r') # goal
ax.text(x_goal[0], x_goal[1], x_goal[2], "GOAL: (" + str(round(x_goal[0], 3)) + ", " + str(round(x_goal[1], 3)) + ", " + str(round(x_goal[2], 3)) + ")")
if(len(sys.argv)>1 and sys.argv[1]=='-s'): # save image
fig.savefig(id_gen(dim), bbox_inches='tight')
plt.show() # Show plot