-
Notifications
You must be signed in to change notification settings - Fork 8
/
application.py
241 lines (201 loc) · 8.18 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import json
import io
import base64
import threading
from flask import Flask, session, render_template, copy_current_request_context
from flask_socketio import emit, SocketIO
import numpy as np
import librosa
import matplotlib
import matplotlib.pyplot as plt
# import soundfile as sf
import torch
import torch.nn.functional as F
from utils.model import CNN
from utils.transformers import audio_transform, ZmuvTransform
matplotlib.use("Agg")
plt.ioff()
application = app = Flask(__name__)
app.config["FILEDIR"] = "static/_files/"
# socketio = SocketIO(app, logger=True, engineio_logger=True)
socketio = SocketIO(app, cors_allowed_origins="*")
wake_words = ["hey", "fourth", "brain"]
classes = wake_words[:]
classes.append("oov")
window_size_ms = 750
# 16 bit signed int. 2^15-1
audio_float_size = 32767
sample_rate = 16000
max_length = int(window_size_ms / 1000 * sample_rate)
no_of_frames = 2
# init model
num_labels = len(wake_words) + 1 # oov
num_maps1 = 48
num_maps2 = 64
num_hidden_input = 768
hidden_size = 128
model = CNN(num_labels, num_maps1, num_maps2, num_hidden_input, hidden_size)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
print(model)
# load trained model
model.load_state_dict(
torch.load("trained_models/model_hey_fourth_brain_with_noise.pt", map_location=torch.device("cpu"))
)
# load zmuv
zmuv_transform = ZmuvTransform().to(device)
zmuv_transform.load_state_dict(torch.load(str("trained_models/zmuv.pt.bin"), map_location=torch.device("cpu")))
def plot_spectrogram(result, spec, title=None, ylabel="freq_bin", aspect="auto", xmax=None):
mel_fig, mel_axs = plt.subplots(1, 1)
mel_axs.set_title(title or "Spectrogram (db)")
mel_axs.set_ylabel(ylabel)
mel_axs.set_xlabel("frame")
im = mel_axs.imshow(librosa.power_to_db(spec), origin="lower", aspect=aspect)
if xmax:
mel_axs.set_xlim((0, xmax))
mel_fig.colorbar(im, ax=mel_axs)
my_stringIObytes = io.BytesIO()
plt.savefig(my_stringIObytes, format="jpg")
my_stringIObytes.seek(0)
my_base64_jpgData = base64.b64encode(my_stringIObytes.read())
result["plot"] = my_base64_jpgData.decode("utf-8")
def plot_time(result, soundata):
time_fig, time_axs = plt.subplots(1, 1)
time_axs.set_title("Signal")
time_axs.set_xlabel("Time (samples)")
time_axs.set_ylabel("Amplitude")
time_axs.plot(soundata)
# plt.plot(soundata)
my_stringIObytes = io.BytesIO()
plt.savefig(my_stringIObytes, format="jpg")
my_stringIObytes.seek(0)
my_base64_jpgData = base64.b64encode(my_stringIObytes.read())
result["plot"] = my_base64_jpgData.decode("utf-8")
@app.route("/")
def index():
"""Return the client application."""
return render_template("audio/main.html")
def init_session(options=None):
if options:
session["bufferSize"] = options.get("bufferSize", 1024)
session["fps"] = options.get("fps", 44100)
else:
session["bufferSize"] = 1024
session["fps"] = 44100
session["windowSize"] = 0
session["frames"] = []
session["batch"] = []
session["target_state"] = 0
session["infer_track"] = []
session["threads"] = []
@socketio.on("start-recording", namespace="/audio")
def start_recording(options):
"""Start recording audio from the client."""
init_session(options)
@socketio.on("write-audio", namespace="/audio")
def write_audio(data):
"""Write a chunk of audio from the client."""
if "frames" not in session:
init_session()
session["frames"].append(data)
session["windowSize"] += 1
# print(f'{session["windowSize"]} - {int(session["fps"] / session["bufferSize"] * window_size_ms / 1000)}')
# if we got 750 ms then process
if session["windowSize"] >= int(session["fps"] / session["bufferSize"] * window_size_ms / 1000):
# convert stream to numpy
stream_bytes = [str.encode(i) if type(i) == str else i for i in session["frames"]]
try:
audio_data = np.frombuffer(b"".join(stream_bytes), dtype=np.int16).astype(np.float32) / audio_float_size
# sound_data = np.frombuffer(b"".join(stream_bytes), dtype=np.int16).astype(np.float)
except Exception as e:
print(f"not able to read from buffer {e}")
# reset
session["windowSize"] = 0
session["frames"] = []
return
# convert sample rate to 16K
audio_data = librosa.resample(audio_data, session["fps"], sample_rate)
print(audio_data.size)
# for testing write to file
# sf.write(f'{current_app.config["FILEDIR"]}temp.wav', audio_data, sample_rate)
audio_data_length = audio_data.size / sample_rate * 1000
# if given audio is less than window size, pad it
if audio_data_length < window_size_ms:
audio_data = np.append(audio_data, np.zeros(int(max_length - audio_data.size)))
else:
audio_data = audio_data[:max_length]
# convert to tensor
inp = torch.from_numpy(audio_data).float().to(device)
# recording is stopped return
if "batch" not in session:
return
session["batch"].append(inp)
# reset
session["windowSize"] = 0
session["frames"] = []
if len(session["batch"]) >= no_of_frames:
audio_tensors = torch.stack(session["batch"])
session["batch"] = [] # reset batch
mel_audio_data = audio_transform(audio_tensors, device, sample_rate)
zmuv_mel_audio_data = zmuv_transform(mel_audio_data)
scores = model(zmuv_mel_audio_data.unsqueeze(1))
scores = F.softmax(scores, -1).squeeze(1)
idx = 0
for score in scores:
preds = score.cpu().detach().numpy()
preds = preds / preds.sum()
pred_idx = np.argmax(preds)
pred_word = classes[pred_idx]
print(f"predicted label {pred_idx} - {pred_word}")
label = wake_words[session["target_state"]]
if pred_word == label:
session["target_state"] += 1
session["infer_track"].append(pred_word)
session["threads"] = []
time_result = {}
t = threading.Thread(target=plot_time, args=(time_result, audio_tensors[idx].numpy()))
session["threads"].append(t)
t.start()
for th in session["threads"]:
th.join()
session["threads"] = []
mel_result = {}
mels = audio_transform(audio_tensors[idx], device, sample_rate, skip_log=True)
t = threading.Thread(target=plot_spectrogram, args=(mel_result, mels, "MelSpectrogram", "mel freq"))
session["threads"].append(t)
t.start()
for th in session["threads"]:
th.join()
session["threads"] = []
log_mel_result = {}
logmels = audio_transform(audio_tensors[idx], device, sample_rate)
t = threading.Thread(
target=plot_spectrogram, args=(log_mel_result, logmels, "LogMelSpectrogram", "mel freq")
)
session["threads"].append(t)
t.start()
for th in session["threads"]:
th.join()
word_details = {
"word": pred_word,
"buffer": audio_data.tolist(),
"time": time_result["plot"],
"mel": mel_result["plot"],
"logmel": log_mel_result["plot"],
}
emit("add-prediction", json.dumps(word_details))
if session["infer_track"] == wake_words:
word_details = {"word": f"Wake word {' '.join(session['infer_track'])} detected"}
emit("add-prediction", json.dumps(word_details))
# reset
session["target_state"] = 0
session["infer_track"] = []
idx = idx + 1
@socketio.on("end-recording", namespace="/audio")
def end_recording():
"""Stop recording audio from the client."""
del session["frames"]
del session["batch"]
if __name__ == "__main__":
app.run(host="0.0.0.0")
socketio.run(app)