-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
138 lines (125 loc) · 5.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#coding:utf-8
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from model import Model
from data import getTrainGenerator
from edge_hold_loss import EdgeHoldLoss
import math
import time
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def lr_scheduler(epoch,base_lr):
drop = 0.5
epoch_drop = epochs / 8.
lr = base_lr * math.pow(drop, math.floor((1+epoch)/epoch_drop))
print('lr: %f'%lr)
return lr
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Pytorch version of cvpr2019_Pyramid-Feature-Attention-Network-for-Saliency-detection')
parser.add_argument('--train_file',default='train.txt',help='your train file', type=str)
parser.add_argument('--test_file',default='train.txt',help='your test file', type=str)
parser.add_argument('--model_weights',default='model/vgg16_no_top.pth',help='your model weights', type=str)
parser.add_argument('--log_interval',default=10,help='step interval between showing logs', type=int)
parser.add_argument('--save_interval',default=5,help='epoch interval between saving model', type=int)
parser.add_argument('--pretrained',default=False,help='whether load pretrained weights')
'''
the form of 'train_pair.txt' is
img_path1 gt_path1\n
img_path2 gt_path2\n
'''
args = parser.parse_args()
model_name = args.model_weights
train_path = args.train_file
test_path = args.test_file
print("train_file:", train_path)
print("test_file:", test_path)
print("model_weights:", model_name)
#model config
target_size = (256,256)
batch_size = 5
base_lr = 1e-2
epochs = 50
threshold = 0.5
f = open(train_path, 'r')
trainlist = f.readlines()
f.close()
steps_per_epoch = len(trainlist) // batch_size
if len(trainlist) % batch_size != 0:
steps_per_epoch += 1
f = open(test_path, 'r')
testlist = f.readlines()
f.close()
test_steps = len(testlist) // batch_size
if len(testlist) % batch_size != 0:
test_steps += 1
dropout = True
with_CA = True
with_SA = True
#build model
model = Model(dropout=dropout,with_CA=with_CA,with_SA=with_SA)
model.to(device)
if args.pretrained:
model.load_state_dict(torch.load(model_name))
loss_f = EdgeHoldLoss().to(device)
if target_size[0] % 32 != 0 or target_size[1] % 32 != 0:
raise ValueError('Image height and wight must be a multiple of 32')
#data generator
traingen = getTrainGenerator(train_path, target_size, batch_size, israndom=True)
testgen = getTrainGenerator(test_path, target_size, batch_size, israndom=False)
i = 0
global_Fb = 0
print('start training!')
start_time = time.time()
for epoch in range(epochs):
model.train()
lr = lr_scheduler(epoch,base_lr)
optimizer = torch.optim.SGD(model.parameters(), lr = lr, momentum=0.9)
#optimizer = torch.optim.Adam(model.parameters(),lr = lr)
for step in range(steps_per_epoch):
i += 1#total steps
optimizer.zero_grad()
imgs, masks = traingen.__next__()
imgs = Variable(imgs.to(device))
masks = Variable(masks.to(device),requires_grad=False)
outputs = model(imgs)
loss = loss_f(outputs,masks)
loss.backward()
optimizer.step()
if i % args.log_interval == 0:
secs = time.time()-start_time
print('TIME[%02d:%02d:%02d] EPOCH[%d/%d] STEP[%d/%d] loss: %f'%(secs//3600, secs//60%60, secs%60, epoch+1, epochs, step+1, steps_per_epoch, loss.item()))
if (epoch+1) % args.save_interval == 0:
print('start validating!')
model.eval()
TP, TN, FN, FP = 0, 0, 0, 0
for step in range(test_steps):
imgs, masks = testgen.__next__()
imgs = Variable(imgs.to(device))
masks = masks.view((-1))
outputs = model(imgs)
preds = nn.Sigmoid()(outputs).view((-1))
preds = preds > threshold
preds = preds.cpu().numpy()
masks = masks.cpu().numpy()
TP += ((preds == 1) & (masks == 1)).sum()
TN += ((preds == 0) & (masks == 0)).sum()
FN += ((preds == 0) & (masks == 1)).sum()
FP += ((preds == 1) & (masks == 0)).sum()
#print(TP,TN,FN,FP)
p = TP / (TP + FP)
r = TP / (TP + FN)
Fb = 1.3 * r * p / (r + 0.3 * p)
acc = (TP + TN) / (TP + TN + FP + FN)
if (step+1) % args.log_interval == 0:
print('VAL STEP[%d/%d] precision: %.3f, recall: %.3f, Fb score: %.3f, acc: %.3f'%(step+1, test_steps,p,r,Fb,acc))
f = open('result.txt','a+')
f.writelines('EPOCH[%d] VAL STEP[%d/%d] precision: %.3f, recall: %.3f, Fb score: %.3f, acc: %.3f'%(epoch, step+1, test_steps,p,r,Fb,acc)+'\n')
f.close()
if Fb > global_Fb:
print('get better performance from %.3f to %.3f), saving model...'%(global_Fb,Fb))
global_Fb = Fb
torch.save(model.state_dict(),model_name)