-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize.h
118 lines (107 loc) · 3.58 KB
/
optimize.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// Copyright (c) 2009 by Chris Dyer <[email protected]>
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _OPTIMIZE_H_
#define _OPTIMIZE_H_
#include <iostream>
#include <vector>
#include <string>
#include <cassert>
#include "lbfgs.h"
// abstract base class for first order optimizers
// order of invocation: new, Load(), Optimize(), Save(), delete
class Optimizer {
public:
Optimizer() : eval_(1), has_converged_(false) {}
virtual ~Optimizer();
virtual std::string Name() const = 0;
int EvaluationCount() const { return eval_; }
bool HasConverged() const { return has_converged_; }
void Optimize(const double& obj,
const std::vector<double>& g,
std::vector<double>* x) {
assert(g.size() == x->size());
OptimizeImpl(obj, g, x);
scitbx::lbfgs::traditional_convergence_test<double> converged(g.size());
has_converged_ = converged(&(*x)[0], &g[0]);
}
void Save(std::ostream* out) const;
void Load(std::istream* in);
protected:
virtual void SaveImpl(std::ostream* out) const;
virtual void LoadImpl(std::istream* in);
virtual void OptimizeImpl(const double& obj,
const std::vector<double>& g,
std::vector<double>* x) = 0;
int eval_;
private:
bool has_converged_;
};
class RPropOptimizer : public Optimizer {
public:
explicit RPropOptimizer(int num_vars,
double eta_plus = 1.2,
double eta_minus = 0.5,
double delta_0 = 0.1,
double delta_max = 50.0,
double delta_min = 1e-6) :
prev_g_(num_vars, 0.0),
delta_ij_(num_vars, delta_0),
eta_plus_(eta_plus),
eta_minus_(eta_minus),
delta_max_(delta_max),
delta_min_(delta_min) {
assert(eta_plus > 1.0);
assert(eta_minus > 0.0 && eta_minus < 1.0);
assert(delta_max > 0.0);
assert(delta_min > 0.0);
}
std::string Name() const;
void OptimizeImpl(const double& obj,
const std::vector<double>& g,
std::vector<double>* x);
void SaveImpl(std::ostream* out) const;
void LoadImpl(std::istream* in);
private:
std::vector<double> prev_g_;
std::vector<double> delta_ij_;
const double eta_plus_;
const double eta_minus_;
const double delta_max_;
const double delta_min_;
};
class SGDOptimizer : public Optimizer {
public:
explicit SGDOptimizer(int num_vars, double eta = 0.1) : eta_(eta) {
(void) num_vars;
}
std::string Name() const;
void OptimizeImpl(const double& obj,
const std::vector<double>& g,
std::vector<double>* x);
private:
const double eta_;
};
class LBFGSOptimizer : public Optimizer {
public:
explicit LBFGSOptimizer(int num_vars, int memory_buffers = 10);
std::string Name() const;
void SaveImpl(std::ostream* out) const;
void LoadImpl(std::istream* in);
void OptimizeImpl(const double& obj,
const std::vector<double>& g,
std::vector<double>* x);
private:
scitbx::lbfgs::minimizer<double> opt_;
};
#endif