-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
399 lines (361 loc) · 13.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import argparse
import json
import tqdm
import enum
import itertools
import numpy as np
import os.path
import shutil
import typing
import set_based_prompting
class AttentionVariation(enum.Enum):
normal = 'normal'
normal_padded = 'normal_padded'
normal_reversed = 'normal_reversed'
order_independent = 'order_independent'
order_independent_padded = 'order_independent_padded'
only_parallel_attention = 'only_parallel_attention'
only_parallel_attention_reversed = 'only_parallel_attention_reversed'
only_parallel_position = 'only_parallel_position'
only_parallel_position_reversed = 'only_parallel_position_reversed'
normal_permuted = 'normal_permuted'
def main() -> None:
parser = argparse.ArgumentParser(
description="Run attention mask editing tests on a given model"
)
parser.add_argument(
"--model-name",
type=str,
help="name of the model to test",
choices=[
"gpt2",
"meta-llama/Llama-2-7b-chat-hf",
"meta-llama/Llama-2-7b-hf",
"meta-llama/Llama-2-13b-hf",
"meta-llama/Llama-2-13b-chat-hf",
"meta-llama/Llama-2-70b-hf",
"meta-llama/llama-2-70b-chat-hf",
"WizardLM/WizardLM-7B-V1.0",
"lmsys/vicuna-7b-v1.5",
"meta-llama/Meta-Llama-3-8B",
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.2",
"meta-llama/Meta-Llama-3-70B",
"meta-llama/Meta-Llama-3-70B-Instruct",
],
default="gpt2",
)
parser.add_argument(
"--torch-device",
type=str,
help="device to run tests on",
default="auto",
choices=["cuda", "cpu", "auto"],
)
parser.add_argument(
"--cuda-device-id",
type=int,
help="cuda device id to run tests on",
default=None,
)
parser.add_argument(
"--max-new-tokens",
type=int,
help="max number of tokens to generate given each prompt",
default=10,
)
parser.add_argument(
"--infile",
type=str,
help="path/to/file containing formatted input prompts",
required=True,
)
parser.add_argument(
"--outfile",
type=str,
help="path/to/file that should contain generated outputs",
required=True,
)
parser.add_argument(
"--pad-attention",
help="whether to pad all parallel substrings to the same length",
default=False,
action="store_true",
)
parser.add_argument(
"--add-only-parallel-attention",
help="whether to generate outputs that modify the attention mask but not positional encoding",
default=False,
action="store_true",
)
parser.add_argument(
"--add-only-parallel-position",
help="whether to generate outputs that modify the positional encoding but not attention mask",
default=False,
action="store_true",
)
parser.add_argument(
"--record-accuracy",
help="whether to evaluate and record the accuracy of model output answers",
required=False,
action="store_true",
)
parser.add_argument( # only used if --record-accuracy
"--accuracy-file",
type=str,
help="path/to/csv to record experiment accuracy results",
required=False,
default="records.csv",
)
parser.add_argument(
"--num-normal-ordering-permutations",
type=int,
default=None,
required=False,
help="If set, will generate normal output for X! orderings of the parallel substrings",
)
parser.add_argument(
"--temp_file",
help="Write intermediate results to a temporary file, prevents overwriting of output file if already created.",
default=False,
action="store_true",
)
parser.add_argument(
"--append-temp-file",
help="Append to temporary file, starting from the last successful prompt, instead of start of input file.",
default=False,
action="store_true",
)
parser.add_argument(
"--top-k",
type=int,
help="top k tokens to consider for token probabilities",
default=100,
)
parser.add_argument(
"--include-probs",
help="Include probabilities in output",
default=False,
action="store_true",
)
args = parser.parse_args()
model_name: str = args.model_name
torch_device: typing.Literal["auto", "cpu", "cuda"] = args.torch_device
cuda_device_id: typing.Union[None, int] = args.cuda_device_id
input_file_name: str = args.infile
output_file_name: str = args.outfile
max_new_tokens: int = args.max_new_tokens
pad_attention: bool = args.pad_attention
only_parallel_attention: bool = args.add_only_parallel_attention
only_parallel_position: bool = args.add_only_parallel_position
record_accuracy: bool = args.record_accuracy
accuracy_file: str = args.accuracy_file
temp_file: bool = args.temp_file
append_temp_file:bool = args.append_temp_file
top_k: int = args.top_k
include_probs:bool = args.include_probs
num_normal_ordering_permutations: typing.Union[None,int] = args.num_normal_ordering_permutations
if cuda_device_id is not None:
assert torch_device == "cuda", "cuda_device_id is only used when torch_device is 'cuda'"
conditions = [
AttentionVariation.normal,
AttentionVariation.normal_reversed,
AttentionVariation.order_independent,
]
if pad_attention:
conditions.append(AttentionVariation.normal_padded)
conditions.append(AttentionVariation.order_independent_padded)
if only_parallel_attention:
conditions.append(AttentionVariation.only_parallel_attention)
conditions.append(AttentionVariation.only_parallel_attention_reversed)
if only_parallel_position:
conditions.append(AttentionVariation.only_parallel_position)
conditions.append(AttentionVariation.only_parallel_position_reversed)
parallel_orderings:typing.List[typing.Union[None,typing.List[int]]] = [None]*len(conditions)
if num_normal_ordering_permutations is not None:
set_based_prompting.print_with_timestamp(
f"Warning: num_normal_ordering_permutations is set, will generate normal output for {num_normal_ordering_permutations}! orderings of the parallel substrings"
)
# We want to generate output for num_normal_ordering_permutations! normal orderings
perm_list = list(itertools.permutations(list(range(0,num_normal_ordering_permutations))))
for i, perm in enumerate(perm_list, start=1):
parallel_orderings.append(list(perm))
conditions.append(AttentionVariation.normal_permuted)
run_experiment(
model_name,
torch_device,
cuda_device_id,
input_file_name,
output_file_name,
max_new_tokens,
conditions,
parallel_orderings,
record_accuracy,
accuracy_file,
temp_file,
append_temp_file,
top_k,
include_probs
)
def run_experiment(
model_name : str,
torch_device : typing.Literal["auto", "cpu", "cuda"],
cuda_device_id : typing.Union[None, int],
input_file_name : str,
output_file_name : str,
max_new_tokens : int,
conditions: typing.List[AttentionVariation],
parallel_orderings: typing.List[typing.Union[None, typing.List[int]]],
record_accuracy : bool,
accuracy_file : str,
temp_file : bool,
append_temp_file : bool,
top_k:int,
include_probs:bool
) -> None:
set_based_prompting.print_with_timestamp(
f"Running on {input_file_name} with model {model_name} and torch device {torch_device} with max_new_tokens {max_new_tokens}"
)
set_based_prompting.print_with_timestamp(
f"Running with conditions: {', '.join([c.value for c in conditions])}"
)
original_output_file_name = output_file_name
if temp_file:
if os.path.exists(output_file_name):
set_based_prompting.print_with_timestamp(
f"Output file {output_file_name} already exists, skipping..."
)
return
else:
output_file_name = output_file_name + "_tmp"
set_based_prompting.print_with_timestamp("Loading model and tokenizer...")
model, tokenizer = set_based_prompting.load_model(model_name, torch_device, cuda_device_id)
prompts = set_based_prompting.SplitPrompt.from_json_file(input_file_name)
open_mode = 'wt'
if temp_file and append_temp_file:
prompts = set_based_prompting.filter_prompts(output_file_name, prompts)
open_mode = 'at'
set_based_prompting.print_with_timestamp(
f"Found {len(prompts)} input prompts, running..."
)
set_based_prompting.print_with_timestamp(f"Writing results to {original_output_file_name}...")
with open(output_file_name, open_mode) as fout:
for prompt in tqdm.tqdm(
prompts, desc=f"[{set_based_prompting.get_timestamp_str()}] Running {model_name} {os.path.basename(input_file_name).split('.')[0]}", total=len(prompts), leave=True
):
prefix, parallel_substrings, suffix = prompt.gen_split_text()
responses = {}
for i,condition in enumerate(conditions):
resp = generate_response(
condition,
prefix,
parallel_substrings,
suffix,
model,
tokenizer,
max_new_tokens,
parallel_ordering=parallel_orderings[i],
metadata=prompt.metadata,
)
key=condition.value
if condition==AttentionVariation.normal_permuted:
ordering = parallel_orderings[i]
if ordering is None:
key+="_normal"
else:
key+="_"+''.join(map(str, ordering))
responses[key] = resp.to_json_dict()
if include_probs:
responses[key]['probs'] = resp.get_per_token_probs(tokenizer, top_k).to_json_dict()
prompt_output = {
"prompt": prompt.text,
"model": model_name,
"prompt_metadata": prompt.metadata,
"responses": responses,
}
json.dump(
prompt_output,
fout,
)
fout.write("\n")
fout.flush()
if temp_file:
shutil.move(output_file_name, original_output_file_name)
if record_accuracy:
set_based_prompting.print_with_timestamp(
f"Recording accuracy of model outputs, accuracy records saved to {accuracy_file}"
)
set_based_prompting.record_accuracy(
output_file_name, accuracy_file, "pct_raw_output_contains_correct_answer_only"
)
set_based_prompting.print_with_timestamp(
f"Finished running {len(prompts)} prompts, results saved to {original_output_file_name}"
)
def generate_response(
condition: AttentionVariation,
prefix: str,
parallel_substrings: typing.List[str],
suffix: str,
model,
tokenizer,
max_new_tokens: int,
parallel_ordering: typing.Union[None, typing.List[int]],
metadata: typing.Union[None, dict] = None,
)->set_based_prompting.OrderIndependentResult:
if condition in [
AttentionVariation.normal,
AttentionVariation.normal_padded,
AttentionVariation.normal_reversed,
AttentionVariation.normal_permuted,
]:
is_order_independent = False
else:
is_order_independent = True
if condition in [
AttentionVariation.normal_reversed,
AttentionVariation.only_parallel_attention_reversed,
AttentionVariation.only_parallel_position_reversed,
] :
substrings = parallel_substrings[::-1]
elif condition in [AttentionVariation.normal_permuted]:
substrings = list(np.asarray(parallel_substrings)[parallel_ordering])
else:
substrings = parallel_substrings
if condition in [
AttentionVariation.normal_padded,
AttentionVariation.order_independent_padded,
]:
pad_attention = True
else:
pad_attention = False
if condition in [
AttentionVariation.only_parallel_attention,
AttentionVariation.only_parallel_attention_reversed,
]:
edit_position = False
edit_attention = True
elif condition in [
AttentionVariation.only_parallel_position,
AttentionVariation.only_parallel_position_reversed,
]:
edit_position = True
edit_attention = False
else:
edit_position = True
edit_attention = True
return set_based_prompting.order_independent_query(
prefix=prefix,
parallel_substrings=substrings,
suffix=suffix,
model=model,
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
#torch_device=torch_device,
is_order_independent=is_order_independent,
edit_position= edit_position,
edit_attention = edit_attention,
pad_attention=pad_attention,
metadata=metadata,
)
if __name__ == "__main__":
main()