-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrainOps.py
212 lines (151 loc) · 7.42 KB
/
trainOps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
import numpy.random as npr
from ConfigParser import *
import os
import cPickle
import scipy.io
import sys
import glob
from numpy.linalg import norm
from scipy import misc
import utils
class TrainOps(object):
def __init__(self, model, exp_dir):
self.model = model
self.exp_dir = exp_dir
self.config = tf.ConfigProto()
self.config.gpu_options.allow_growth=True
self.data_dir = './data/'
def load_exp_config(self):
config = ConfigParser()
config.read(self.exp_dir + '/exp_configuration')
self.source_dataset = config.get('EXPERIMENT_SETTINGS', 'source_dataset')
self.target_dataset = config.get('EXPERIMENT_SETTINGS', 'target_dataset')
self.no_images = config.getint('EXPERIMENT_SETTINGS', 'no_images')
self.log_dir = os.path.join(self.exp_dir,'logs')
self.model_save_path = os.path.join(self.exp_dir,'model')
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
if not os.path.exists(self.model_save_path):
os.makedirs(self.model_save_path)
self.train_iters = config.getint('MAIN_SETTINGS', 'train_iters')
self.k = config.getint('MAIN_SETTINGS', 'k')
self.batch_size = config.getint('MAIN_SETTINGS', 'batch_size')
self.model.batch_size = self.batch_size
self.model.gamma = config.getfloat('MAIN_SETTINGS', 'gamma')
self.model.learning_rate_min = config.getfloat('MAIN_SETTINGS', 'learning_rate_min')
self.model.learning_rate_max = config.getfloat('MAIN_SETTINGS', 'learning_rate_max')
self.T_adv = config.getint('MAIN_SETTINGS', 'T_adv')
self.T_min = config.getint('MAIN_SETTINGS', 'T_min')
def load_svhn(self, split='train'):
print ('Loading SVHN dataset.')
image_file = 'train_32x32.mat' if split=='train' else 'test_32x32.mat'
image_dir = os.path.join(self.data_dir, 'svhn', image_file)
svhn = scipy.io.loadmat(image_dir)
images = np.transpose(svhn['X'], [3, 0, 1, 2]) / 255.
labels = svhn['y'].reshape(-1)
labels[np.where(labels==10)] = 0
return images, labels
def load_mnist(self, split='train'):
print ('Loading MNIST dataset.')
image_file = 'train.pkl' if split=='train' else 'test.pkl'
image_dir = os.path.join(self.data_dir, 'mnist', image_file)
with open(image_dir, 'rb') as f:
mnist = cPickle.load(f)
images = mnist['X']
labels = mnist['y']
images = images / 255.
images = np.stack((images,images,images), axis=3) # grayscale to rgb
return np.squeeze(images[:self.no_images]), labels[:self.no_images]
def load_test_data(self, target):
if target=='svhn':
self.target_test_images, self.target_test_labels = self.load_svhn(split='test')
elif target=='mnist':
self.target_test_images, self.target_test_labels = self.load_mnist(split='test')
return self.target_test_images,self.target_test_labels
def train(self):
# build a graph
print 'Building model'
self.model.mode='train_encoder'
self.model.build_model()
print 'Built'
print 'Loading data.'
source_train_images, source_train_labels = self.load_mnist(split='train')
source_test_images, source_test_labels = self.load_mnist(split='test')
target_test_images, target_test_labels = self.load_test_data(target=self.target_dataset)
print 'Loaded'
with tf.Session(config=self.config) as sess:
tf.global_variables_initializer().run()
saver = tf.train.Saver()
summary_writer = tf.summary.FileWriter(logdir=self.log_dir, graph=tf.get_default_graph())
counter_k = 0
print 'Training'
for t in range(self.train_iters):
if ((t+1) % self.T_min == 0) and (counter_k < self.k): #if T_min iterations are passed
print 'Generating adversarial images [iter %d]'%(counter_k)
for start, end in zip(range(0, self.no_images, self.batch_size), range(self.batch_size, self.no_images, self.batch_size)):
feed_dict = {self.model.z: source_train_images[start:end], self.model.labels: source_train_labels[start:end]}
#assigning the current batch of images to the variable to learn z_hat
sess.run(self.model.z_hat_assign_op, feed_dict)
for n in range(self.T_adv): #running T_adv gradient ascent steps
sess.run(self.model.max_train_op, feed_dict)
#tmp variable with the learned images
learnt_imgs_tmp = sess.run(self.model.z_hat, feed_dict)
#stacking the learned images and corresponding labels to the original dataset
source_train_images = np.vstack((source_train_images, learnt_imgs_tmp))
source_train_labels = np.hstack((source_train_labels, source_train_labels[start:end]))
#shuffling the dataset
rnd_indices = range(len(source_train_images))
npr.shuffle(rnd_indices)
source_train_images = source_train_images[rnd_indices]
source_train_labels = source_train_labels[rnd_indices]
counter_k+=1
i = t % int(source_train_images.shape[0] / self.batch_size)
#current batch of images and labels
batch_z = source_train_images[i*self.batch_size:(i+1)*self.batch_size]
batch_labels = source_train_labels[i*self.batch_size:(i+1)*self.batch_size]
feed_dict = {self.model.z: batch_z, self.model.labels: batch_labels}
#running a step of gradient descent
sess.run([self.model.min_train_op, self.model.min_loss], feed_dict)
#evaluating the model
if t % 250 == 0:
summary, min_l, max_l, acc = sess.run([self.model.summary_op, self.model.min_loss, self.model.max_loss, self.model.accuracy], feed_dict)
train_rand_idxs = np.random.permutation(source_train_images.shape[0])[:100]
test_rand_idxs = np.random.permutation(target_test_images.shape[0])[:100]
train_acc, train_min_loss = sess.run(fetches=[self.model.accuracy, self.model.min_loss],
feed_dict={self.model.z: source_train_images[train_rand_idxs],
self.model.labels: source_train_labels[train_rand_idxs]})
test_acc, test_min_loss = sess.run(fetches=[self.model.accuracy, self.model.min_loss],
feed_dict={self.model.z: target_test_images[test_rand_idxs],
self.model.labels: target_test_labels[test_rand_idxs]})
summary_writer.add_summary(summary, t)
print ('Step: [%d/%d] train_min_loss: [%.4f] train_acc: [%.4f] test_min_loss: [%.4f] test_acc: [%.4f]'%(t+1, self.train_iters, train_min_loss, train_acc, test_min_loss, test_acc))
print 'Saving'
saver.save(sess, os.path.join(self.model_save_path, 'encoder'))
def test(self, target):
test_images, test_labels = self.load_test_data(target=self.target_dataset)
# build a graph
print 'Building model'
self.model.mode='train_encoder'
self.model.build_model()
print 'Built'
with tf.Session() as sess:
tf.global_variables_initializer().run()
print ('Loading pre-trained model.')
variables_to_restore = slim.get_model_variables(scope='encoder')
restorer = tf.train.Saver(variables_to_restore)
restorer.restore(sess, os.path.join(self.model_save_path,'encoder'))
N = 100 #set accordingly to GPU memory
target_accuracy = 0
target_loss = 0
print 'Calculating accuracy'
for test_images_batch, test_labels_batch in zip(np.array_split(test_images, N), np.array_split(test_labels, N)):
feed_dict = {self.model.z: test_images_batch, self.model.labels: test_labels_batch}
target_accuracy_tmp, target_loss_tmp = sess.run([self.model.accuracy, self.model.min_loss], feed_dict)
target_accuracy += target_accuracy_tmp/float(N)
target_loss += target_loss_tmp/float(N)
print ('Target accuracy: [%.4f] target loss: [%.4f]'%(target_accuracy, target_loss))
if __name__=='__main__':
print '...'