-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlelele.py
319 lines (243 loc) · 8.33 KB
/
lelele.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
SOLVE = True
try:
'''
If fpylll is installed LeLeLe can also solve the system.
'''
from fpylll import *
except ImportError:
SOLVE = False
def _wrap_lin(ctx, val):
assert isinstance(ctx, LeLeLe)
# linear combination
if isinstance(val, LinearCombination):
return val
# variable
if isinstance(val, Variable):
return val.lin()
# constant
try:
c = int(val)
return LinearCombination(ctx=ctx, combine=[(c, ctx.one())])
except ValueError:
raise ValueError('failed to covert %r to linear combination' % val)
def _zero_matrix(n, m):
M = []
for _ in range(n):
M.append([0] * m)
return M
class LeLeLe:
def __init__(self):
self.vars = []
self.vone = None
self.constraints = []
def one(self):
'''
Returns a "variable" which should the constant value one.
'''
if self.vone is None:
self.vone = self.bit(name='1')
return self.vone
def bit(self, name=None):
return self.var(name, 'bit').short(norm=1)
def byte(self, name=None):
return self.var(name, 'byte').short(norm=0xff)
def word(self, width, name=None):
assert width > 0
return self.var(name, 'word').short(norm=(1 << width)-1)
def var(self, name=None, prefix='var'):
var = Variable()
var.ctx = self
if name is not None:
var.name = name
else:
var.name = '%s%d' % (prefix, len(self.vars))
var.index = len(self.vars)
self.vars.append(var)
return var
def add_constraint(self, lin, norm):
assert isinstance(lin, LinearCombination)
self.constraints.append((lin, int(norm)))
def system(self):
'''
Returns the Matrix representing the LLL system.
This does not require fpylll.
'''
# calculathe largest norm
max_norm = max([norm for _, norm in self.constraints], default=1)
rows = len(self.vars)
cols = len(self.constraints)
M = _zero_matrix(rows, cols)
for (i, (lin, norm)) in enumerate(self.constraints):
rescale = max_norm // norm # rescale factor
for (scale, var) in lin.combine:
M[var.index][i] = scale * rescale
return M
def solve(self):
'''
Solves the system and assigns the solution to the variables
'''
if not SOLVE:
raise ImportError('You must install fpylll to use the solve method')
M = self.system()
# transformation (used to derieve assignment of variables)
U = IntegerMatrix.identity(len(M))
# reduced basis (used to derieve assignment of constraints)
R = IntegerMatrix.from_matrix(M)
# run LLL and save the result (for debugging)
LLL.reduction(R, U)
self.U = U
self.R = R
self.M = IntegerMatrix.from_matrix(M)
# reset solutions for each variable
for var in self.vars:
var.solutions = []
# reset solutions for each constraint
for (con, _) in self.constraints:
con.solutions = []
# assign values to variables/constraints
for row, assign in zip(R, U):
if all([r == 0 for r in row]):
# trivial solution
continue
# sanity check
assert len(assign) == len(self.vars)
assert len(row) == len(self.constraints)
# add solutions to variables
for var, val in zip(self.vars, assign):
var.solutions.append(val)
# add solutions to constraints
for (con, _), val in zip(self.constraints, row):
con.solutions.append(val)
if self.vone and int(self.vone) != 1:
raise ValueError('.one() constant not assigned 1 in solution (assigned 0x%x); check the norms assigned with .short' % int(self.vone))
return (self.R, self.U, self.M)
def __repr__(self):
cons = []
for (lin, norm) in self.constraints:
cons.append(' 0x%x = |%s|' % (norm,lin))
return 'LLLSystem(\n' + '\n'.join(cons) + '\n)'
class LinearCombination:
def __init__(self, ctx, combine):
self.ctx = ctx
self.combine = combine # linear combination
self.solutions = None
def __eq__(self, other):
if not isinstance(other, LinearCombination):
return False
if self.ctx != other.ctx:
return False
if self.combine != other.combine:
return False
return True
def __repr__(self):
lin = ['%r * %s' % (v, hex(s)) if s != 1 else '%r' % v for (s, v) in self.combine]
return ' + '.join(lin)
def __mod__(self, other):
try:
n = int(other)
except ValueError:
raise ValueError('Modulo of linear combination only defined for integers')
return LinearCombination(
ctx=self.ctx,
combine=self.combine + [(n, self.ctx.var())]
)
def __neg__(self):
return LinearCombination(
ctx=self.ctx,
combine=[(-s, v) for (s, v) in self.combine]
)
def __sub__(self, other):
return self + (-other)
def __rsub__(self, other):
return self.__sub__(other)
def __add__(self, other):
if other == 0: return self # this is convenient
# combine terms
# i.e. [(s1, var)] + [(s2, var)] would become [(s1 + s2, var)]
other = _wrap_lin(self.ctx, other)
assert self.ctx == other.ctx, 'linear combinations belong to different systems'
le_vars = {v: s for (s, v) in self.combine}
for (s, v) in other.combine:
try:
le_vars[v] += s
except KeyError:
le_vars[v] = s
return LinearCombination(
ctx=self.ctx,
combine= [(s,v) for (v,s) in le_vars.items()]
)
def __radd__(self, other):
return self.__add__(other)
def __mul__(self, other):
try:
n = int(other)
except ValueError:
raise ValueError('Can only mul. linear combination by integer, not %r' % other)
return LinearCombination(
ctx=self.ctx,
combine=[(s * n, v) for (s, v) in self.combine],
)
def __rmul__(self, other):
return self.__mul__(other)
def short(self, norm=1):
'''
Constrain the linear combination to have small norm.
The "norm" parameter should be understood
as the "max-value" of the variable/linear combination.
'''
assert norm > 0
self.ctx.add_constraint(self, norm)
return self
def __getitem__(self, n):
'''
Return the n'th solution
'''
# check if constraint and solution set
if self.solutions is not None:
return self.solutions[n]
# otherwise compute from variable assignments
return sum([s * v[n] for (s, v) in self.combine])
def __int__(self):
return int(self[0])
def __index__(self):
return int(self)
class Variable:
def __init__(self):
self.solutions = None # not solved
def lin(self):
return LinearCombination(ctx=self.ctx, combine=[(0x1, self)])
def __neg__(self):
return - self.lin()
def __sub__(self, other):
return self.lin() - _wrap_lin(self.ctx, other)
def __rsub__(self, other):
return self.lin() - _wrap_lin(self.ctx, other)
def __add__(self, other):
return self.lin() + _wrap_lin(other)
def __radd__(self, other):
return self.__add__(other)
def __mul__(self, other):
return self.lin() * int(other)
def __rmul__(self, other):
return self.__mul__(other)
def __repr__(self):
return self.name
def __index__(self):
return int(self)
def __mod__(self, other):
return self.lin() % int(other)
def short(self,norm=1):
'''
Constrain the variable to have small norm.
'''
self.lin().short(norm)
return self
def __getitem__(self, n):
'''
Return the n'th solution
'''
if self.solutions is None:
raise ValueError('Must solve the system first')
return self.solutions[n]
def __int__(self):
return int(self[0])