-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathagent.ts
111 lines (101 loc) · 4.45 KB
/
agent.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import {
Context,
StartEvent,
StopEvent,
Workflow,
WorkflowEvent,
} from "@llamaindex/core/workflow";
import { OpenAI, Settings } from "llamaindex";
import { PackageEvent, packager } from "./packager";
const MAX_REVIEWS = 3;
// Create custom event types
export class MessageEvent extends WorkflowEvent<{ msg: string }> {}
class CodeEvent extends WorkflowEvent<{ code: string }> {}
class ReviewEvent extends WorkflowEvent<{
review: string;
code: string;
}> {}
// Helper function to truncate long strings
const truncate = (str: string) => {
const MAX_LENGTH = 60;
if (str.length <= MAX_LENGTH) return str;
return str.slice(0, MAX_LENGTH) + "...";
};
// the architect is responsible for writing the structure and the initial code based on the specification
const architect = async (context: Context, ev: StartEvent) => {
// get the specification from the start event and save it to context
context.set("specification", ev.data.input);
const spec = context.get("specification");
// write a message to send an update to the user
context.writeEventToStream(
new MessageEvent({
msg: `Writing app using this specification: ${truncate(spec)}`,
}),
);
const prompt = `Build an app for this specification: <spec>${spec}</spec>. Make a plan for the directory structure you'll need, then return each file in full. Don't supply any reasoning, just code.`;
const code = await Settings.llm.complete({ prompt });
return new CodeEvent({ code: code.text });
};
// the coder is responsible for updating the code based on the review
const coder = async (context: Context, ev: ReviewEvent) => {
// get the specification from the context
const spec = context.get("specification");
// get the latest review and code
const { review, code } = ev.data;
// write a message to send an update to the user
context.writeEventToStream(
new MessageEvent({
msg: `Update code based on review: ${truncate(review)}`,
}),
);
const prompt = `We need to improve code that should implement this specification: <spec>${spec}</spec>. Here is the current code: <code>${code}</code>. And here is a review of the code: <review>${review}</review>. Improve the code based on the review, keep the specification in mind, and return the full updated code. Don't supply any reasoning, just code.`;
const updatedCode = await Settings.llm.complete({ prompt });
return new CodeEvent({ code: updatedCode.text });
};
// the reviewer is responsible for reviewing the code and providing feedback
const reviewer = async (context: Context, ev: CodeEvent) => {
// get the specification from the context
const spec = context.get("specification");
// get latest code from the event
const { code } = ev.data;
// update and check the number of reviews
const numberReviews = context.get("numberReviews", 0) + 1;
context.set("numberReviews", numberReviews);
if (numberReviews > MAX_REVIEWS) {
// the we've done this too many times - return the code
context.writeEventToStream(
new MessageEvent({
msg: `Already reviewed ${numberReviews - 1} times, stopping!`,
}),
);
return new StopEvent({ result: code });
}
// write a message to send an update to the user
context.writeEventToStream(
new MessageEvent({ msg: `Review #${numberReviews}: ${truncate(code)}` }),
);
const prompt = `Review this code: <code>${code}</code>. Check if the code quality and whether it correctly implements this specification: <spec>${spec}</spec>. If you're satisfied, just return 'Looks great', nothing else. If not, return a review with a list of changes you'd like to see.`;
const review = (await Settings.llm.complete({ prompt })).text;
if (review.includes("Looks great")) {
// the reviewer is satisfied with the code, let's return the review
context.writeEventToStream(
new MessageEvent({
msg: `Reviewer says: ${review}`,
}),
);
return new PackageEvent({ code });
}
return new ReviewEvent({ review, code });
};
export function createAgent(model: string): Workflow {
const codeAgent = new Workflow({ validate: true });
codeAgent.addStep(StartEvent, architect, { outputs: CodeEvent });
codeAgent.addStep(ReviewEvent, coder, { outputs: CodeEvent });
codeAgent.addStep(CodeEvent, reviewer, {
outputs: [ReviewEvent, PackageEvent],
});
codeAgent.addStep(PackageEvent, packager, { outputs: StopEvent });
// Update the llm model with the provided model
Settings.llm = new OpenAI({ model, temperature: 1 });
return codeAgent;
}