-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreferences.bib
935 lines (841 loc) · 31.6 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
@InProceedings{atkeson1997,
author={C. G. Atkeson and J. C. Santamaria},
booktitle={Proceedings of the IEEE International Conference on Robotics and Automation},
series={ICRA'97},
title={{A Comparison of Direct and Model-Based Reinforcement Learning}},
month={April},
year={1997},
volume={4},
pages={3557--3564},
keywords={learning (artificial intelligence);model reference adaptive control systems;nonlinear control systems;robots;acrobot;direct reinforcement learning;model-based reinforcement learning;pendulum swing-up;Computational modeling;Control system synthesis;Control systems;Educational institutions;Force control;Jacobian matrices;Learning;Robots;State-space methods;Training data},
}
@incollection{bacciu2015probabilistic,
title = {{Probabilistic Modeling in Machine Learning}},
author = {D. Bacciu and P. J. G. Lisboa and A. Sperduti and T. Villmann},
editor = {Kacprzyk, Janusz and Pedrycz, Witold},
isbn = {978-3-662-43505-2},
year = {2015},
date = {2015-01-01},
pages = {545--575},
publisher = {Springer Berlin Heidelberg},
address = {Berlin, Heidelberg},
keywords = {Bayesian networks, generative model, graphical models, hidden Markov models},
pubstate = {published},
tppubtype = {incollection}
}
@inproceedings{baker1992large,
title={{Large Vocabulary Recognition of Wall Street Journal Sentences at Dragon Systems}},
author={Baker, James and Baker, Janet and Bamberg, Paul and Bishop, Kathleen and Gillick, Larry and Helman, Vera and Huang, Zezhen and Ito, Yoshiko and Lowe, Stephen and Peskin, Barbara and Roth, Robert and Scattone, Francesco},
booktitle={Proceedings of the Workshop on Speech and Natural Language},
pages={387--392},
year={1992},
organization={Association for Computational Linguistics},
isbn = {1-55860-272-0}
}
@BOOK{barberBRML2012,
author = {Barber, D.},
title= {{Bayesian Reasoning and Machine Learning}},
publisher = {{Cambridge University Press}},
year = 2012}
@article{barto1995learning,
title={{Learning to Act using Real-Time Dynamic Programming}},
author={Barto, Andrew G. and Bradtke, Steven J. and Singh, Satinder P.},
journal={Artificial intelligence},
volume={72},
number={1-2},
pages={81--138},
year={1995},
publisher={Elsevier}
}
@inproceedings{bergstra2011algorithms,
title={{Algorithms for Hyper-Parameter Optimization}},
author={Bergstra, James S. and Bardenet, R{\'e}mi and Bengio, Yoshua and K{\'e}gl, Bal{\'a}zs},
booktitle = {Proceedings of the 24th International Conference on Neural Information Processing Systems},
series = {NIPS'11},
pages={2546--2554},
year={2011},
isbn = {978-1-61839-599-3},
publisher = {Curran Associates Inc.},
}
@INPROCEEDINGS{bhatia2010sampling,
author={A. Bhatia and L. E. Kavraki and M. Y. Vardi},
booktitle={2010 IEEE International Conference on Robotics and Automation},
title={{Sampling-Based Motion Planning with Temporal Goals}},
year={2010},
pages={2689-2696},
keywords={mobile robots;path planning;temporal logic;discrete abstraction;geometry-based approach;low-level sampling-based planner;mobile robots;multilayered synergistic approach;propositions;sampling-based motion planning;second-order nonlinear robot models;temporal goals;temporal logic specifications;Computational geometry;Logic;Mobile robots;Motion planning;Robotics and automation;Sampling methods;Solid modeling;Sun;USA Councils;Vehicle dynamics},
ISSN={1050-4729},
}
@article{bilmes1998gentle,
title={{A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models}},
author={Bilmes, Jeff A.},
journal={International Computer Science Institute},
volume={4},
number={510},
pages={126},
year={1998}
}
@article{Boutilier1999,
author = {Boutilier, Craig and Dean, Thomas and Hanks, Steve},
isbn = {90-5199-237-8},
issn = {10769757},
journal = {Journal of Artificial Intelligence Research},
pages = {1--94},
title = {{Decision-Theoretic Planning: Structural Assumptions and Computational Leverage}},
volume = {11},
year = {1999}
}
@article{Brafman2002,
author = {Brafman, Ronen I and Tennenholtz, Moshe},
isbn = {1532-4435},
issn = {15324435},
journal = {Journal of Machine Learning Research},
keywords = {decision processes,learning games,markov,provably efficient learning,reinforcement learning,stochastic games},
mendeley-groups = {MDP Model Learning},
pages = {213--231},
title = {{R-MAX -- A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning}},
volume = {3},
year = {2002}
}
@article{Brochu2010_x,
Author = {Eric Brochu and Vlad M. Cora and Nando {de Freitas}},
journal = {CoRR},
volume = {abs/1012.2599},
title = {{A Tutorial on Bayesian Optimization of}\\ {Expensive} {Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning}},
year = {2010}}
}
@techreport{Brochu2010,
Author = {Eric Brochu and Vlad M. Cora and Nando {de Freitas}},
Month = {December},
Number = {arXiv:1012.2599},
Title = {{A Tutorial on Bayesian Optimization of}\\ {Expensive} {Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning}},
Type = {eprint},
Year = {2010}}
}
@inproceedings{buffet2005robust,
author = {Buffet, Olivier and Aberdeen, Douglas},
title = {{Robust Planning with (L)RTDP}},
booktitle = {Proceedings of the 19th International Joint Conference on Artificial Intelligence},
series = {IJCAI'05},
year = {2005},
location = {Edinburgh, Scotland},
pages = {1214--1219},
numpages = {6},
publisher = {Morgan Kaufmann Publishers Inc.},
address = {San Francisco, CA, USA},
}
@article{caelli2001shape,
title={{Shape Tracking and Production using Hidden Markov Models}},
author={Caelli, Terry and McCabe, Andrew and Briscoe, Garry},
journal={International Journal of Pattern Recognition and Artificial Intelligence},
volume={15},
number={01},
pages={197--221},
year={2001},
publisher={World Scientific}
}
@article{calinon2007learning,
title={{On Learning, Representing, and Generalizing a Task in a Humanoid Robot}},
author={Calinon, Sylvain and Guenter, Florent and Billard, Aude},
journal={IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)},
volume={37},
number={2},
pages={286--298},
year={2007},
publisher={IEEE}
}
@inproceedings{cassandra1998spa,
author = {Cassandra, A. R.},
booktitle = {{Working Notes of AAAI 1998 Fall Symposium on Planning with Partially Observable Markov Decision Processes}},
comment = {* Good for ideas on how POMDPs could be used
* Types of applications - machine maintenance, robot autonomy, etc.
* For robotic applications, control rules for robots done using models at higher level of abstraction than what robot actuators and sensors provide, or to do it at a hierarchical level. },
pages = {17--24},
title = {{A Survey of POMDP Applications}},
year = {1998}
}
@article{chamie2015finite,
title={{Finite-Horizon Markov Decision Processes with State Constraints}},
author={Chamie, Mahmoud El and Açıkmeşe, Behçet},
journal = {arXiv preprint arXiv:1507.01585},
year={2015}
}
@inbook{chinaei2011,
author={Chinaei, Hamid R. and Chaib-draa, Brahim},
title={{Learning Dialogue POMDP Models from Data}},
bookTitle={Advances in Artificial Intelligence: 24th Canadian Conference on Artificial Intelligence},
series={CAI'11},
year={2011},
publisher={Springer Berlin Heidelberg},
address={Berlin, Heidelberg},
pages={86--91},
month={May}
}
@article{cochran2001generic,
title={{Generic Markov models for Availability Estimation and Failure Characterization in Petroleum Refineries}},
author={Cochran, Jeffery K. and Murugan, Arvindh and Krishnamurthy, Vijayalakshmi},
journal={Computers \& Operations Research},
volume={28},
number={1},
pages={1--12},
year={2001},
publisher={Elsevier}
}
@misc{cordwellpymdptoolbox,
title={{Python Markov Decision Process Toolbox}},
author={Steven A. W. Cordwell},
url={{https://github.com/sawcordwell/pymdptoolbox}},
year={2015}
}
@misc{nogueirabayesianoptimization,
title={{BayesianOptimization: A Python Implementation of Global Optimization with Gaussian Processes}},
author={Nogueira, Fernando M. F.},
url={https://github.com/fmfn/BayesianOptimization},
year={2014},
}
@article{cronvall2009combining,
title={{Combining Discrete-Time Markov Processes and Probabilistic Fracture Mechanics in RI-ISI Risk Estimates}},
author={Cronvall, Otso and M{\"a}nnist{\"o}, Ilkka},
journal={International Journal of Pressure Vessels and Piping},
volume={86},
number={11},
pages={732--737},
year={2009},
publisher={Elsevier}
}
@article{dayan1992q,
title={{Q-Learning}},
author={Watkins, Christopher J. C. H. and Dayan, Peter},
journal={Machine learning},
volume={8},
number={3-4},
pages={279--292},
year={1992},
publisher={Springer}
}
@article{Degris2010,
author = {Degris, Thomas and Sigaud, Oliver},
journal = {{Markov Decision Processes in Artificial Intelligence}},
pages = {99--126},
title = {{Factored Markov Decision Processes}},
year = {2010},
publisher = {Wiley-IEEE Press}
}
@inproceedings{deisenroth2011pilco,
title={{PILCO: A Model-Based and Data-Efficient Approach to Policy Search}},
author={Deisenroth, Marc and Rasmussen, Carl E.},
booktitle={Proceedings of the 28th International Conference on Machine Learning},
series={ICML'11},
pages={465--472},
year={2011},
month={January}
}
@article{delgado2011efficient,
title={{Efficient Solutions to Factored MDPs with Imprecise Transition Probabilities}},
author={Delgado, Karina Valdivia and Sanner, Scott and De Barros, Leliane Nunes},
journal={Artificial Intelligence},
volume={175},
number={9-10},
pages={1498--1527},
year={2011},
publisher={Elsevier}
}
@article{delgado2016real,
title={{Real-time dynamic programming for Markov decision processes with imprecise probabilities}},
author={Delgado, Karina V and de Barros, Leliane N and Dias, Daniel B and Sanner, Scott},
journal={Artificial Intelligence},
volume={230},
pages={192--223},
year={2016},
publisher={Elsevier}
}
@article{el2008optimal,
title={{Optimal Design of a Cogeneration Plant for Power and Desalination Taking Equipment Reliability into Consideration}},
author={El-Nashar, Ali M.},
journal={Desalination},
volume={229},
number={1},
pages={21--32},
year={2008},
publisher={Elsevier}
}
@inproceedings{epshteyn2008active,
title={{Active Reinforcement Learning}},
author={Epshteyn, Arkady and Vogel, Adam and DeJong, Gerald},
booktitle={Proceedings of the 25th International Conference on Machine Learning},
series={ICML'08},
pages={296--303},
year={2008},
isbn = {978-1-60558-205-4},
publisher = {ACM},
address = {New~York, NY, USA}
}
@article{gales2008application,
title={{The Application of Hidden Markov Models in Speech Recognition}},
author={Gales, Mark and Young, Steve},
journal={Foundations and trends in signal processing},
volume={1},
number={3},
pages={195--304},
year={2008},
publisher={Now Publishers Inc.}
}
@article{garcia2015comprehensive,
title={{A Comprehensive Survey on Safe Reinforcement Learning}},
author={Garc{\i}a, Javier and Fern{\'a}ndez, Fernando},
journal={Journal of Machine Learning Research},
volume={16},
number={1},
pages={1437--1480},
year={2015}
}
@article{Ghahramani2015,
author = {Ghahramani, Zoubin},
isbn = {0028-0836},
issn = {0028-0836},
journal = {Nature},
mendeley-groups = {Bayesian Optimization},
number = {7553},
pages = {452--459},
pmid = {26017444},
title = {{Probabilistic machine learning and artificial intelligence}},
volume = {521},
year = {2015}
}
@article{ghavamzadeh2015bayesian,
title={{Bayesian Reinforcement Learning: A Survey}},
author={Ghavamzadeh, Mohammad and Mannor, Shie and Pineau, Joelle and Tamar, Aviv and others},
journal={Foundations and Trends{\textregistered} in Machine Learning},
volume={8},
number={5-6},
pages={359--483},
year={2015},
publisher={Now Publishers, Inc.}
}
@article{givan2000bounded,
title={{Bounded-parameter Markov Decision Processes}},
author={Givan, Robert and Leach, Sonia and Dean, Thomas},
journal={Artificial Intelligence},
volume={122},
number={1-2},
pages={71--109},
year={2000},
publisher={Elsevier}
}
@article{grimshaw2011markov,
title={{Markov Chain Models for Delinquency: Transition Matrix Estimation and Forecasting}},
author={Grimshaw, Scott D. and Alexander, William P.},
journal={Applied Stochastic Models in Business and Industry},
volume={27},
number={3},
pages={267--279},
year={2011},
publisher={Wiley Online Library}
}
@INPROCEEDINGS{gross2008shopbot,
author={H. M. Gross and H. J. Boehme and C. Schr{\"o}ter and S. M{\"u}ller and A. K{\"o}nig and C. Martin and M. Merten and A. Bley},
booktitle={2008 IEEE International Conference on Systems, Man and Cybernetics},
title={{ShopBot: Progress in Developing an Interactive Mobile Shopping Assistant for Everyday Use}},
year={2008},
series={SMC'08},
pages={3471-3478},
keywords={graph theory;intelligent robots;mobile robots;probability;robot vision;service robots;sonar detection;home improvement store;interactive mobile shopping assistant;multimodal user detection;probabilistic approach;robotic shopping assistant;sonar-based gridmap;vision-based graph map;Cognitive robotics;Intelligent robots;Mobile robots;Navigation;Robot sensing systems;Robot vision systems;Sensor phenomena and characterization;Simultaneous localization and mapping;Sonar detection;Testing},
ISSN={1062-922X},
organization={IEEE}
}
@inproceedings{guez2012efficient,
title={{Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search}},
author={Guez, Arthur and Silver, David and Dayan, Peter},
booktitle = {Proceedings of the 25th International Conference on Neural Information Processing Systems},
series = {NIPS'12},
pages={1025--1033},
year={2012},
publisher = {Curran Associates Inc.},
}
@article{GuillotS17,
author = {Matthieu Guillot and Gautier Stauffer},
title = {{The Stochastic Shortest Path Problem: {A} polyhedral combinatorics
perspective}},
journal = {CoRR},
year = {2017},
}
@article{hawes2016strands,
title={{The STRANDS Project: Long-Term Autonomy in Everyday Environments}},
author={Hawes, Nick and Burbridge, Chris and Jovan, Ferdian and Kunze, Lars and Lacerda, Bruno and Mudrov{\'a}, Lenka and Young, Jay and Wyatt, Jeremy and Hebesberger, Denise and K{\"o}rtner, Tobias and others},
journal={arXiv preprint arXiv:1604.04384},
year={2016}
}
@ARTICLE{hawes2017strands,
author={Hawes, Nick and Burbridge, Chris and Jovan, Ferdian and Kunze, Lars and Lacerda, Bruno and Mudrov{\'a}, Lenka and Young, Jay and Wyatt, Jeremy and Hebesberger, Denise and K{\"o}rtner, Tobias and others},
journal={IEEE Robotics Automation Magazine},
title={{The STRANDS Project: Long-Term Autonomy in Everyday Environments}},
year={2017},
volume={24},
number={3},
pages={146-156},
keywords={Legged locomotion;Monitoring;Navigation;Robustness;Service robots},
ISSN={1070-9932},
month={September},
}
@inproceedings{hester2010generalized,
title={{Generalized Model Learning for Reinforcement Learning on a Humanoid Robot}},
author={Hester, Todd and Quinlan, Michael and Stone, Peter},
booktitle={2010 IEEE International Conference on Robotics and Automation},
series={ICRA'10},
pages={2369--2374},
year={2010},
pages={2369-2374},
keywords={decision making;decision trees;generalisation (artificial intelligence);humanoid robots;learning (artificial intelligence);mobile robots;multi-robot systems;Aldebaran Nao humanoid robot;autonomous robot;decision making;decision trees;generalized model learning;reinforcement learning;robot programming;Computer science;Decision making;Decision trees;Helicopters;Humanoid robots;Learning systems;Machine learning;Robot programming;Robotics and automation;USA Councils},
ISSN={1050-4729},
month={May},
}
@inproceedings{hester2012rtmba,
title={{RTMBA: A Real-Time Model-Based Reinforcement Learning Architecture for Robot Control}},
author={Hester, Todd and Quinlan, Michael and Stone, Peter},
booktitle={2012 IEEE International Conference on Robotics and Automation},
series={ICRA'12},
pages={85--90},
year={2012},
keywords={approximation theory;control engineering computing;decision making;learning (artificial intelligence);parallel architectures;real-time systems;robots;RL;RTMBA;autonomous vehicle;decision-making learning;parallel architecture;planning processes;real-time model-based reinforcement learning architecture;robot control;sample based approximate planning methods;Approximation algorithms;Computational modeling;Multicore processing;Planning;Real time systems;Robots},
ISSN={1050-4729},
month={May},
}
@inproceedings{Hoffman2011,
Author = {Matthew D. Hoffman and Eric Brochu and Nando {de Freitas}},
Booktitle = {Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence},
series={UAI'11},
Title = {{Portfolio Allocation for {B}ayesian Optimization}},
Year = {2011},
pages={327--336},
isbn = {978-0-9749039-7-2},
publisher = {AUAI Press},
address = {Arlington, VA, USA}
}
@book{howard1960dynamic,
author={Howard, Ronald A.},
year={1960},
edition = {1st},
isbn = {0262080095},
keywords = {1960, dynamic, markov, markov-process, mdp, programming},
month = {June},
publisher = {The MIT Press},
title = {{Dynamic Programming and Markov Processes}},
}
@article{kaelbling1996reinforcement,
title={{Reinforcement Learning: A Survey}},
author={Kaelbling, Leslie Pack and Littman, Michael L. and Moore, Andrew W.},
journal={Journal of Artificial Intelligence Research},
volume={4},
pages={237--285},
year={1996},
month={May},
issn = {1076-9757},
publisher = {AI Access Foundation}
}
@inproceedings{kawaguchi2015bayesian,
title={{Bayesian Optimization with Exponential Convergence}},
author={Kawaguchi, Kenji and Kaelbling, Leslie Pack and Lozano-P{\'e}rez, Tom{\'a}s},
booktitle={Proceedings of the 28th International Conference on Neural Information Processing Systems},
series={NIPS'15},
pages={2809--2817},
year={2015},
publisher = {MIT Press},
address = {Cambridge, MA, USA}
}
@article{kearns2002near,
title={{Near-Optimal Reinforcement Learning in Polynomial Time}},
author={Kearns, Michael and Singh, Satinder},
journal={Machine Learning},
volume={49},
number={2-3},
pages={209--232},
year={2002},
publisher={Springer}
}
@inproceedings{koenig1996unsupervised,
title={{Unsupervised Learning of Probabilistic Models for Robot Navigation}},
author={Koenig, Sven and Simmons, Reid G.},
booktitle={Proceedings of the IEEE International Conference on Robotics and Automation},
series={ICRA'96},
volume={3},
pages={2301--2308},
year={1996},
ISSN={1050-4729},
month={April},
}
@inproceedings{lacerda2015optimal,
title={{Optimal Policy Generation for Partially Satisfiable Co-Safe LTL Specifications}},
author={Lacerda, Bruno and Parker, David and Hawes, Nick},
booktitle = {Proceedings of the 24th International Conference on Artificial Intelligence},
series = {IJCAI'15},
pages={1587--1593},
year={2015}
}
@article{lee1968maximum,
title={{Maximum Likelihood and Bayesian Estimation of Transition Probabilities}},
author={Lee, T. C. and Judge, G. G. and Zellner, Arnold},
journal={Journal of the American Statistical Association},
volume={63},
number={324},
pages={1162--1179},
year={1968},
month={December},
publisher={Taylor \& Francis Group}
}
@inproceedings{littman1995complexity,
title={{On the Complexity of Solving Markov Decision Problems}},
author={Littman, Michael L. and Dean, Thomas L. and Kaelbling, Leslie Pack},
booktitle={Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence},
series = {UAI'95},
isbn = {1-55860-385-9},
pages={394--402},
numpages = {9},
year={1995},
organization={Morgan Kaufmann Publishers Inc.},
}
@book{lizotte2008practicalx,
title={Practical bayesian optimization},
author={Lizotte, Daniel James},
year={2008},
publisher={University of Alberta}
}
@phdthesis{lizotte2008practical,
author = {Lizotte, Daniel James},
title = {{Practical Bayesian Optimization}},
school = {University of Alberta},
year = {2008},
}
@inproceedings{martinez2007active,
title={{Active Policy Learning for Robot Planning and Exploration under Uncertainty}},
author={Martinez-Cantin, Ruben and {de Freitas}, Nando and Doucet, Arnaud and Castellanos, Jos{\'e} A},
booktitle={Robotics: Science and Systems},
pages={321--328},
year={2007}
}
@article{MartinezCantin2009,
author = {Martinez-Cantin, Ruben and {de Freitas}, Nando and Brochu, Eric and Castellanos, Jos{\'{e}} and Doucet, Arnaud},
eprint = {0712.3744},
isbn = {0929-5593},
issn = {09295593},
journal = {Autonomous Robots},
keywords = {Active SLAM,Active learning,Active vision,Attention and gaze planning,Bayesian optimization,Dynamic sensor networks,Model predictive control,Online path planning,Policy search,Reinforcement learning,Sequential experimental design},
number = {2},
pages = {93--103},
title = {{A Bayesian Exploration-Exploitation Approach for Optimal Online Sensing and Planning with a Visually Guided Mobile Robot}},
volume = {27},
year = {2009}
}
@article{Melo20111757,
title = "Decentralized \{MDPs\} with sparse interactions ",
journal = "Artificial Intelligence ",
volume = "175",
number = "11",
pages = "1757 - 1789",
year = "2011",
note = "",
issn = "0004-3702",
author = "Francisco S. Melo and Manuela Veloso",
keywords = "Multiagent coordination",
keywords = "Sparse interaction",
keywords = "Decentralized Markov decision processes "
}
@misc{Metralabs, url={http://www.metralabs.com/en/shopping-rfid-robot}, journal={MetraLabs}, publisher={MetraLabs}, author={MetraLabs}, year={2017}}
@article{Minka1999,
author = {Minka, T.},
journal = {Technical report, MIT},
pmid = {1000198457},
title = {{From Hidden Markov Models to Linear Dynamical Systems}},
year = {1999}
}
@article{minka2003bayesian,
title={{Bayesian Inference, Entropy, and the Multinomial Distribution}},
author={Minka, Tom P.},
year={2003}
}
@inproceedings{Moldovan2012,
author = {Moldovan, Teodor Mihai and Abbeel, Pieter},
isbn = {978-1-4503-1285-1},
booktitle = {Proceedings of the 29th International Conference on Machine Learning},
series={ICML'12},
keywords = {ICML,exploration,machine learning,safe,safety},
pages = {1451--1458},
title = {{Safe Exploration in Markov Decision Processes}},
year = {2012},
publisher = {Omnipress},
}
@article{morse_simpar_2012,
author = {Gilberto Echeverria and
S\'everin Lemaignan and
Arnaud Degroote and
Simon Lacroix and
Michael Karg and
Pierrick Koch and
Charles Lesire and
Serge Stinckwich},
title = {{Simulating Complex Robotic Scenarios with MORSE}},
journal={Simulation, Modeling, and Programming for Autonomous Robots},
year = {2012},
pages = {197-208},
publisher={Springer}
}
@inproceedings{nikovski1999learning,
title={{Learning Discrete Bayesian Models for Autonomous Agent Navigation}},
author={Nikovski, Daniel Nikolaev and Nourbakhsh, Illah R.},
booktitle={Proceedings of the 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation},
series={CIRA'99},
pages={137--143},
year={1999},
}
@inproceedings{nikovski2000learning,
title={{Learning Probabilistic Models for Decision-Theoretic Navigation of Mobile Robots}},
author={Nikovski, Daniel Nikolaev and Nourbakhsh, Illah R.},
booktitle = {Proceedings of the 17th International Conference on Machine Learning},
series={ICML'00},
isbn = {1-55860-707-2},
pages={671--678},
year={2000},
publisher = {Morgan Kaufmann Publishers Inc.}
}
@phdthesis{nikovski2002state,
title={{State-Aggregation Algorithms for Learning Probabilistic Models for Robot Control}},
isbn = {0-493-53870-4},
author={Nikovski, Daniel Nikolaev and Nourbakhsh, Illah R.},
year={2002},
school={Carnegie Mellon University, The Robotics Institute}
}
@incollection{parent1991stochastic,
title={{Stochastic Modeling of a Water Resource System: Analytical Techniques versus Synthetic Approaches}},
author={Parent, E. and Lebdi, F. and Hurand, P.},
booktitle={{Water Resources Engineering Risk Assessment}},
pages={415--434},
year={1991},
publisher={Springer},
isbn={978-3-642-76971-9},
}
@article{pasanisi2012estimating,
title={{Estimating Discrete Markov Models from Various Incomplete Data Schemes}},
author={Pasanisi, Alberto and Fu, Shuai and Bousquet, Nicolas},
journal={Computational Statistics \& Data Analysis},
volume={56},
number={9},
pages={2609--2625},
year={2012},
month={September},
publisher={Elsevier},
issn = {0167-9473},
}
@phdthesis{pazis2012non,
title={{Non-Parametric Approximate Linear Programming for MDPs}},
author={Pazis, Jason},
year={2012},
school={Duke University}
}
@inproceedings{perchet2014gaussian,
title={{Gaussian Process Optimization with Mutual Information}},
author={Contal, Emile and Perchet, Vianney and Vayatis, Nicolas},
booktitle = {Proceedings of the 31st International Conference on Machine Learning},
series = {ICML'14},
volume={32},
pages={253--261},
year={2014}
}
@inproceedings{png2011bayesian,
title={{Bayesian Reinforcement Learning for POMDP-Based Dialogue Systems}},
author={Png, ShaoWei and Pineau, Joelle},
booktitle={2011 IEEE International Conference on Acoustics, Speech and Signal Processing},
series={ICASSP'11},
pages={2156--2159},
year={2011},
month={May},
ISSN={1520-6149},
organization={IEEE}
}
@book{poole2010artificial,
title={{Artificial Intelligence: Foundations of Computational Agents}},
author={Poole, David L. and Mackworth, Alan K.},
year={2010},
isbn = {0521519004, 9780521519007},
publisher={Cambridge University Press}
}
@Inbook{Poupart2010,
author="Poupart, Pascal",
editor="Sammut, Claude
and Webb, Geoffrey I.",
title="Bayesian Reinforcement Learning",
bookTitle="Encyclopedia of Machine Learning",
year="2010",
publisher="Springer US",
address="Boston, MA, USA",
pages="90--93",
isbn="978-0-387-30164-8",
}
@book{puterman2014markov,
title={{Markov Decision Processes: Discrete Stochastic Dynamic Programming}},
author={Puterman, Martin L.},
year={2014},
publisher={John Wiley \& Sons}
}
@article{rabiner1989tutorial,
title={{A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition}},
author={Rabiner, Lawrence R},
journal={Proceedings of the IEEE},
volume={77},
number={2},
pages={257--286},
year={1989},
publisher={IEEE},
month={February},
ISSN={0018-9219},
}
@book{rasmussen2006gaussian,
title={{Gaussian Processes for Machine Learning}},
author={Rasmussen, Carl Edward and Williams, Christopher K. I.},
volume={1},
year={2006},
publisher={MIT press Cambridge}
}
@article{satia1973markovian,
title={{Markovian Decision Processes with Uncertain Transition Probabilities}},
author={Satia, Jay K. and Lave Jr, Roy E.},
journal={Operations Research},
volume={21},
number={3},
pages={728--740},
year={1973},
month={June},
publisher={INFORMS},
issn = {0030-364X},
}
@incollection{schaefer2005modeling,
title={{Modeling Medical Treatment Using Markov Decision Processes}},
author={Schaefer, Andrew J. and Bailey, Matthew D. and Shechter, Steven M. and Roberts, Mark S.},
booktitle={{Operations Research and Health Care: A Handbook of Methods and Applications}},
pages={593--612},
year={2005},
publisher={Springer US},
address={Boston, MA},
isbn={978-1-4020-8066-1}
}
@article{shahriari2016taking,
title={{Taking the Human Out of the Loop: A Review of Bayesian Optimization}},
author={Shahriari, Bobak and Swersky, Kevin and Wang, Ziyu and Adams, Ryan P. and de Freitas, Nando},
journal={Proceedings of the IEEE},
volume={104},
number={1},
pages={148--175},
year={2016},
month={January},
publisher={IEEE}
}
@techreport{shatkay1997learning,
title={{Learning Hidden Markov Models with Geometric Information}},
author={Shatkay, Hagit and Kaelbling, Leslie Pack},
year={1997},
publisher = {Brown University}
}
@inproceedings{silver2008sample,
title={{Sample-based Learning and Search with Permanent and Transient Memories}},
author={Silver, David and Sutton, Richard S and M{\"u}ller, Martin},
booktitle={Proceedings of the 25th International Conference on Machine Learning},
series = {ICML'08},
isbn = {978-1-60558-205-4},
pages={968--975},
year={2008},
publisher = {ACM},
address = {New York, NY, USA}
}
@article{singh2000convergence,
title={{Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms}},
author={Singh, Satinder and Jaakkola, Tommi and Littman, Michael L and Szepesv{\'a}ri, Csaba},
journal={Machine learning},
volume={38},
number={3},
pages={287--308},
year={2000},
month={March},
issn = {0885-6125},
publisher = {Kluwer Academic Publishers},
address = {Hingham, MA, USA}
}
@inproceedings{snoek2012practical,
title={{Practical Bayesian Optimization of Machine Learning Algorithms}},
author={Snoek, Jasper and Larochelle, Hugo and Adams, Ryan P.},
booktitle={Proceedings of the 25th International Conference on Neural Information Processing Systems},
series={NIPS'12},
pages={2951--2959},
year={2012},
publisher = {Curran Associates Inc.},
}
@techreport{stolcke1994best,
title={{Best-First Model Merging for Hidden Markov Model Induction}},
author={Stolcke, Andreas and Omohundro, Stephen M},
year={1994},
publisher={International Computer Science Institute},
address={Berkeley, CA, USA}
}
@book{sutton1998reinforcement,
title={{Reinforcement learning: An Introduction}},
author={Sutton, Richard S. and Barto, Andrew G},
volume={1},
number={1},
year={1998},
publisher={MIT press Cambridge}
}
@article{teodorescu2009maximum,
title={{Maximum Likelihood Estimation for Markov Chains}},
author={Teodorescu, Iuliana},
year={2009},
month={May},
journal={arXiv preprint arXiv:0905.4131},
}
@inproceedings{turchetta2016safe,
title={{Safe Exploration in Finite Markov Decision Processes with Gaussian Processes}},
author={Turchetta, Matteo and Berkenkamp, Felix and Krause, Andreas},
booktitle={Proceedings of the 29th International Conference on Neural Information Processing Systems},
series={NIPS'16},
pages={4305--4313},
year={2016}
}
@inproceedings{wang2016optimization,
title={{Optimization as Estimation with Gaussian Processes in Bandit Settings}},
author={Wang, Zi and Zhou, Bolei and Jegelka, Stefanie},
booktitle={Artificial Intelligence and Statistics},
series={AISTATS'16},
year={2016},
pages={1022--1031},
}
@article{welch2003hidden,
title={{Hidden Markov Models and the Baum-Welch Algorithm}},
author={Welch, Lloyd R.},
journal={IEEE Information Theory Society Newsletter},
volume={53},
number={4},
pages={10--13},
year={2003}
}
@misc{wiering2004intelligent,
title={{Intelligent Traffic Light Control}},
author={Wiering, M. A. and {van} Veenen, J. and Vreeken, Jilles and Koopman, Arne},
year={2004},
publisher={Utrecht University: Information and Computing Sciences}
}
@article{wilson2014using,
title={{Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning}},
author={Wilson, Aaron and Fern, Alan and Tadepalli, Prasad},
journal={Journal of Machine Learning Research},
volume={15},
number={1},
pages={253--282},
year={2014}
}
@ARTICLE{young2016,
author={S. Young and M. Gašić and B. Thomson and J. D. Williams},
journal={Proceedings of the IEEE},
title={{POMDP-Based Statistical Spoken Dialog Systems: A Review}},
year={2013},
volume={101},
number={5},
pages={1160-1179},
keywords={Bayes methods;Markov processes;optimisation;speech recognition;POMDP-based statistical spoken dialog systems;SDS;data-driven framework;exact model representation;explicit Bayesian model;noisy environments;optimization;partially observable Markov decision processes;reward-driven process;speech recognizers;statistical dialog systems;Belief propagation;Information processing;Learning systems;Markov processes;Mathematical model;Optimization;Speech processing;Speech recognition;Belief monitoring;partially observable Markov decision process (POMDP);policy optimization;reinforcement learning;spoken dialog systems (SDSs)},
ISSN={0018-9219},
month={May},}