-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
96 lines (76 loc) · 1.93 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
%
% main.tex
%
\input{config}
\includeonly
{
introduction,
ToposTheory,
thefundamentalgroup,
simplicialcomplexes,
etalefunctor,
isomorphism,
outlook
}
\makeindex
\begin{document}
\thispagestyle{empty}
\vspace*{7em}
\begin{center}
{\large\bf R.A.C.H. Wols\par} \vspace{3em} {\LARGE\bf A McCord Functor for Alexandroff Categories\par} \vspace{3em} {\large\bf
Master thesis\par} \vspace{1em} {\large\bf Thesis advisor:
Dr. O.D. Biesel \par} \vspace{3em} {\large\bf July 7, 2016\\
master exam: July 15, 2016\par}\vfill
\includegraphics{ulzegel.pdf}\\
\vspace{2em}
{\large\bf Mathematisch Instituut, Universiteit Leiden}
\end{center}
\clearpage
\begin{abstract}
We shall generalize the construction of McCord's weak homotopy equivalence between the realization of the nerve of a finite poset and the original poset to Alexandroff categories and the induced toposes between them. For this, we shall construct a functor, called the McCord functor, which will give us the basis for a geometric morphism. Finally, we attempt to find sufficient conditions for flatness. The resulting geometric morphism will provide an equivalence of categories on the level of locally constant finite objects.
\end{abstract}
\thispagestyle{empty}
\null\vfill
{
\raggedright
{
\Huge
\itshape
What I cannot create, \\
I do not understand.
\par
\bigskip
}
\bigskip
\bigskip
\raggedleft
\Large
\MakeUppercase
{
Richard Feynman
}
\par
}
\vfill
\vfill
\clearpage
\newpage
\addtocontents{toc}{\protect\enlargethispage{\baselineskip}}
\tableofcontents
\thispagestyle{empty}
\newpage
\clearpage
\pagenumbering{roman}
\include{introduction}
\clearpage
\pagenumbering{arabic}
\include{ToposTheory}
\include{thefundamentalgroup}
\include{simplicialcomplexes}
\include{etalefunctor}
\include{isomorphism}
\include{outlook}
\bibliographystyle{alpha}
\bibliography{references}
\printindex
\end{document}