-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplicialcomplexes.tex
302 lines (266 loc) · 23.4 KB
/
simplicialcomplexes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
%!TEX root = main.tex
%
% simplicialcomplexes.tex
%
\chapter{Simplicial Sets}
In this preliminary section we touch upon some concepts regarding simplicial complexes. In some way they are just a special case of a presheaf topos. On the other hand, they have some intrinsic properties not found in other presheaf toposes. Most of this section is from \cite{goersjardinne09} and \cite{JT2008}. The aim of this section is to define the notion of a star, the nerve of a category and the geometric realization.
\section{Basic Definitions}
\begin{definition}
\label{def: finite cardinal}
Let $n \geq 0$ be a natural number. By the boldface $\mathbf{n}$ we mean the \emph{category} consisting of precisely $n+1$ objects, denoted by $0,1,2,\ldots,n-1,n$, and whose morphisms are precisely
\[ 0 \to 1 \to \cdots \to (n-1) \to n. \]
so that $\mathbf{n}$ may be regarded as a totally ordered set.
\end{definition}
\begin{definition}
\label{def:order category}
By $\mathbf{\Delta}$ we mean the category whose objects are the $\mathbf{n}$'s and whose morphisms are functors $\theta : \mathbf{n} \to \mathbf{m}$.
\end{definition}
If $\theta : \bf{n} \to \bf{m}$ is a morphism in $\bf{\Delta}$, we can also view it as an order-preserving function on the totally ordered sets $\bf{n}$ and $\bf{m}$. It is fruitful to confuse the two viewpoints sometimes.
Among the morphisms in $\mathbf{\Delta}$ are two special types, namely the coface and codegeneracy maps.
\begin{definition}
\index{coface map}
\index{codegeneracy map}
\label{def:coface and codegeneracy maps}
Let $\bf{n} \in \bf{\Delta}$ and let $j \in \bf{n}$. The $j$'th \emph{coface} map is the morphism
\[ d^j : \bf{n-1} \to \bf{n} \]
defined by
\[ d^j\left(0 \to \cdots \to (n-1) \right) = 0 \to \cdots \to (j-1) \to (j+1) \to \cdots \to (n+1), \]
i.e., ``skip $j$'', and the $j$'th \emph{codegeneracy} map is the morphism
\[ s^j : \bf{n+1} \to \bf{n} \]
defined by
\[ s^j\left(0 \to \cdots \to (n+1) \right) = 0 \to \cdots \to (j-1) \to j \to j \to (j+1) \to \cdots \to n, \]
i.e., ``repeat $j$''.
\end{definition}
If $\theta : \bf{n} \to \bf{m}$ is an order-preserving map, one can decompose it uniquely into a composite $\theta = \alpha \circ \beta$ where $\beta : \bf{n} \to \bf{p}$ is surjective and $\alpha : \bf{p} \to \bf{m}$ is injective. Then $\beta$ may be decomposed into a bunch of codegeneracy maps and $\alpha$ may be decomposed into a bunch of coface maps. So the morphisms in $\bf{\Delta}$ are generated by the coface and codegeneracy maps. Moreover, we have
\begin{lemma}[The Cosimplicial Identities]
\index{cosimplicial identities}
\label{lem:cosimplicial identities}
Let $n \geq 2$. Consider the diagram
\[ \begin{tikzcd}
\bf{n} \arrow[shift left=0.2em]{r}{s^j} \arrow[shift left=0.2em]{d}{s^i} & \bf{n-1} \arrow[shift left=0.2em]{l}{d^j} \arrow[shift left=0.2em]{d}{s^i} \\
\bf{n-1} \arrow[shift left=0.2em]{u}{d^i} \arrow[shift left=0.2em]{r}{s^{j-1}} & \bf{n-2} \arrow[shift left=0.2em]{u}{d^i} \arrow[shift left=0.2em]{l}{d^{j-1}}
\end{tikzcd} \]
in $\bf{\Delta}$. Then
\begin{align*}
d^j d^i &= d^i d^{j-1} & \forall \; i < j \\
s^{j-1} s^i &= s^i s^j & \forall \; i < j \\
s^j d^i &= d^i s^{j-1} & \forall \; i < j \\
s^i d^i &= \id & \; \\
s^i d^j &= d^{j-1} s^i & \forall \; i < j-1 \\
s^i d^{i+1} &= \id & i=j-1
\end{align*}
Moreover, the square of $s$'s is an absolute pushout, and the square of $d$'s is an absolute pullback.
\end{lemma}
\begin{proof}
The proof is easy. It's just a lot of bookkeeping.
\end{proof}
Recall that a (co)limit is termed absolute when it is preserved by \emph{any} functor. Since every morphism $\theta : \bf{n} \to \bf{m}$ factors uniquely into a composite of coface and codegeneracy maps, we conclude from the previous lemma
\begin{theorem}
\label{thm:absolute colimits and limits in the order category}
The category $\bf{\Delta}$ has absolute pushouts of surjections and absolute non-empty intersections of injections.
\end{theorem}
\begin{definition}
\index{standard $n$-simplex}
The category of \emph{simplicial sets} $\bf{S}$ is defined to be $\mathbf{Set}^{\bf{\Delta}^{op}}$.
\end{definition}
In practice, a simplicial set $X \in \bf{S}$ is determined when for each natural number $n$ a set $X_n$ is given together with face maps $d_i : X_{n+1} \to X_{n}$ and degeneracy maps $s_i : X_{n-1} \to X_{n}$.
\begin{definition}
The \emph{standard $n$-simplex} is the simplicial set $\Hom_{\Delta}(-,\bf{n}) = \bf{\Delta}(-,\bf{n}) = \bf{y}\bf{n}$.
\end{definition}
By a standard application of Yoneda's lemma we immediately obtain
\begin{lemma}
Let $X \in \bf{S}$ be a simplicial set. Then for each natural number $n \geq 0$ we have
\[ X_n \cong \Hom_{\mathbf{S}}\left( \mathbf{\Delta}(-,\mathbf{n}) , X \right). \]
\end{lemma}
\begin{definition}
\index{degenerate simplex}
\index{non-degenerate simplex}
An $n$-simplex $\sigma \in X_n$ is called \emph{degenerate} if there is a surjection $f : \mathbf{n} \to \mathbf{m}$ with $m < n$ and an $m$-simplex $\tau \in X_m$ such that $\sigma = X(f)(\tau)$. A simplex is called \emph{non-degenerate} if it is not degenerate.
\end{definition}
A very useful lemma which we shall use over and over again is the following.
\begin{lemma}[Eilenberg-Zilber]
\label{lem:eilenberg-zilber}
For each $n$-simplex $\sigma \in X_n$ there exists a unique order-preserving surjection $f : \mathbf{n} \to \mathbf{m}$ and a unique non-degenerate $m$-simplex $\tau \in X_m$ such that $\sigma = X(f)(\tau)$.
\end{lemma}
\begin{proof}
We follow \cite[Proposition 1.2.2]{JT2008}.
If $\sigma$ is already non-degenerate, take $m=n$ and $f = \id$. If $\sigma$ is degenerate, then there exists some surjection $f_1 : \mathbf{n} \to \mathbf{m}_1$ with $m_1 < n$ and an $m_1$-simplex $\sigma_1$ such that $\sigma = X(f_1)(\sigma_1)$. If $\sigma_1$ is non-degenerate, we are done. Otherwise, continue in this way until we reach a $\sigma_j$ that is non-degenerate. This process ends eventually since with each iteration, $m_i < m_{i-1}$, and vertices are always non-degenerate.
So the existence of such a pair $(f,\tau)$ with $\sigma = X(f)(\tau)$ is established. Suppose then that $(f',\tau')$ is another pair with $\sigma = X(f')(\tau')$. Consider the pushout
\[ \begin{tikzcd}
\mathbf{n} \arrow{r}{f} \arrow[swap]{d}{f'} & \mathbf{m} \arrow{d}{\pi} \\
\mathbf{m}' \arrow[swap]{r}{\pi'} & \mathbf{p}
\end{tikzcd} \]
in $\mathbf{\Delta}$. We can apply the Yoneda functor to get a commutative diagram
\[ \begin{tikzcd}
\mathbf{\Delta}\left(-,\mathbf{n}\right) \arrow{r}{\mathbf{\Delta}\left(-,f\right)} \arrow[swap]{d}{\mathbf{\Delta}\left(-,f'\right)} & \mathbf{\Delta}\left(-,\mathbf{m}\right) \arrow{d}{\mathbf{\Delta}\left(-,\pi\right)} \\
\mathbf{\Delta}\left(-,\mathbf{m}'\right) \arrow[swap]{r}{\mathbf{\Delta}\left(-,\pi'\right)} & \mathbf{\Delta}\left(-,\mathbf{p}\right)
\end{tikzcd} \]
in $\mathbf{S}$. This diagram is still a pushout by \cref{thm:absolute colimits and limits in the order category}. While the $n$-simplex $\sigma$ is an element of the set $X_n$, it may equivalently be regarded as a functor $\sigma : \mathbf{\Delta}(-,\mathbf{n}) \to S$ describing how the simplex is laid into the simplicial set. Similarly for $\tau$ and $\tau'$. Hence we have a commutative diagram
\[ \begin{tikzcd}
\mathbf{\Delta}\left(-,\mathbf{n}\right) \arrow{r}{\mathbf{\Delta}\left(-,f\right)} \arrow[swap]{d}{\mathbf{\Delta}\left(-,f'\right)} & \mathbf{\Delta}\left(-,\mathbf{m}\right) \arrow{d}{\mathbf{\Delta}\left(-,\pi\right)} \arrow[bend left]{ddr}{\tau} \\
\mathbf{\Delta}\left(-,\mathbf{m}'\right) \arrow[swap]{r}{\mathbf{\Delta}\left(-,\pi'\right)} \arrow[swap, bend right]{rrd}{\tau'} & \mathbf{\Delta}\left(-,\mathbf{p}\right) \arrow[dotted]{dr}{\exists ! \rho} \\
\; & \; & S
\end{tikzcd} \]
Since $\tau \circ \mathbf{\Delta}(-,f) = \sigma = \tau' \circ\mathbf{\Delta}(-,f')$, there exists a unique mediating $\rho$ such that $\mathbf{\Delta}(-,\pi) \circ \rho = \tau$ and $\mathbf{\Delta}(-,\pi') \circ \rho = \tau'$ as indicated by the dotted arrow.
We can regard $\rho$ equivalently as a $p$-simplex in the set $X_p$, while $\pi$ and $\pi'$ are order-preserving surjections. So we see that $\tau = X(\pi)(\rho)$ and $\tau' = X(\pi')(\rho)$. But $\tau$ and $\tau'$ are both non-degenerate. So we must have $\pi = \pi' = \id$, $m=p=m'$, and hence $\tau = \tau'$.
\end{proof}
Recall that every presheaf is a colimit of representable presheaves by \cref{prop:every presheaf is a colimit of representables}. The good news is that there are not many different representable presheaves in $\bf{S}$. So we conclude
\begin{lemma}
\label{lem:every simplicial set is a colimit of standard n simplices}
If $X \in \bf{S}$ is a simplicial set, there is a canonical isomorphism
\[ X \cong \colim \left( \int_{\mathbf{\Delta}} X \xrightarrow{\pi_X} \mathbf{\Delta} \xrightarrow{\mathbf{y}} \mathbf{Set}^{\mathbf{\Delta}^{op}} \right) \]
\end{lemma}
The above lemma tells you ``how the standard simplices comprise $X$'', and is very combinatorial in nature. It's often convenient to view \cref{lem:every simplicial set is a colimit of standard n simplices} as a different (but equivalent, of course) colimit. Namely, define $\mathbf{\Delta} \downarrow X$ to be the category whose objects are maps $\sigma : \mathbf{\Delta}(-,\mathbf{n}) \to X$ (or just simplices of $X$). An arrow in $\mathbf{\Delta} \downarrow X$ is a commutative diagram of simplicial maps
\[ \begin{tikzcd}
\mathbf{\Delta}(-,\mathbf{n}) \arrow[swap]{dd}{\theta} \arrow{dr}{\sigma} & \; \\
& X \\
\mathbf{\Delta}(-,\mathbf{m}) \arrow[swap]{ur}{\tau} & \;
\end{tikzcd} \]
It is not hard to prove that the colimit in \cref{lem:every simplicial set is a colimit of standard n simplices} is the same thing as
\begin{lemma}
\[ X \cong \colim_{\stackrel{\mathbf{\Delta}(-,\mathbf{n}) \to X}{\text{in } \mathbf{\Delta}\downarrow X}} \mathbf{\Delta}(-,\mathbf{n}). \]
\end{lemma}
\section{Geometric Realization}
\begin{definition}
\index{standard geometric $n$-simplex}
\label{def:standard geometric n-simplex}
The \emph{standard geometric $n$-simplex} is the topological space
\[ \Delta^n := \left\{ (t_0,\ldots,t_n) \in \R^{n+1} \mid \sum_{i=0}^n t_i = 1,\; t_i \geq 0 \text{ for all } i \right\} \]
endowed with the subspace topology from the metric space $\R^{n+1}$.
\end{definition}
There is a functor $|-| : \mathbf{\Delta} \to \mathbf{Top}$ defined by sending $\bf{n}$ to the standard geometric $n$-simplex in $\R^{n+1}$. It's easy to visualize what $|-|$ should do with the coface and codegeneracy maps.
As with all such constructions, once we have a way to turn representable objects into an object of interest in a category, we have a way to turn every presheaf into an object of interest in a category. For a more precise meaning of the previous sentence, we have the following definition.
\begin{definition}
\index{geometric realization}
\label{def:geometric realization of a simplicial set}
The \emph{geometric realization} of $X$ is defined to be the colimit of spaces
\[ |X| := \colim_{\stackrel{\mathbf{\Delta}(-,\mathbf{n}) \to X}{\text{in } \mathbf{\Delta}\downarrow X}} \Delta^n \in \mathbf{Top} \]
\end{definition}
Elements of $|X|$ are equivalence classes of pairs $[\sigma, t]$, where $\sigma \in X_n$ is an $n$-simplex and $t \in \Delta^n$. The equivalence relation is defined by the rule
\[ \left(X(\theta)(\sigma), t \right) \sim \left( \sigma, |\theta|(t) \right), \qquad \theta : \mathbf{n} \to \mathbf{m}. \]
In fact, this is reminiscent of the tensor product! Unfortunately, $\mathbf{Top}$ is not a topos. Moreover, $|X|$ is a space, not just a set (as it is for the tensor product). So we cannot formally define the geometric realization in this way.
A map $f : X \to Y$ of simplicial sets (so, a natural transformation between the presheaves) determines a functor
\[ \mathbf{\Delta} \downarrow f : \mathbf{\Delta} \downarrow X \to \mathbf{\Delta} \downarrow Y, \qquad \sigma \mapsto f \circ \sigma. \]
So we get a continuous map
\[ |f| : |X| \to |Y|, \qquad [\sigma,t] \mapsto [f \circ \sigma, t]. \]
Hence $|-| : \mathbf{\Delta} \to \mathbf{Top}$ extends to a functor $|-| : \mathbf{S} \to \mathbf{Top}$. There's also a functor going the other way. Observe that for any given topological space $S \in \mathbf{Top}$ we have a simplicial set $\Sing(S)$ defined on objects by $\Sing(S)_n := \Hom_{\mathbf{Top}}\left(\Delta^n, S\right)$. It's an exercise to determine what $\Sing$ should do with continuous maps, and what the face and degeneracy maps are for $\Sing(S)$.
\begin{theorem}
The functor $|-|$ is the left-adjoint of $\Sing$.
\end{theorem}
\begin{proof}
There are natural bijections
\begin{align*}
\Hom_{\mathbf{Top}}\left(|X|, S \right) &= \Hom_{\mathbf{Top}}\left( \colim_{\stackrel{\mathbf{\Delta}(-,\mathbf{n}) \to X}{\text{in } \mathbf{\Delta}\downarrow X}} \Delta^n, S \right) \\
&\cong \lim_{\stackrel{\mathbf{\Delta}(-,\mathbf{n}) \to X}{\text{in } \mathbf{\Delta}\downarrow X}} \Hom_{\mathbf{Top}}\left( \Delta^n, S \right) \\
&\cong \lim_{\stackrel{\mathbf{\Delta}(-,\mathbf{n}) \to X}{\text{in } \mathbf{\Delta}\downarrow X}} \Hom_{\mathbf{S}}\left( \mathbf{\Delta}(-,\mathbf{n}), \Sing(S) \right) \\
&\cong \Hom_{\mathbf{S}}\left(X, \Sing(S) \right).
\end{align*}
\end{proof}
\section{The Nerve of a Category}
From the way we defined the category $\mathbf{\Delta}$ we have an obvious inclusion functor
\[ \mathbf{\Delta} \to \mathbf{Cat}, \qquad \mathbf{n} \mapsto \mathbf{n}. \]
So we have a way to change representable objects into objects of a category that we are interested in. We can do the whole construction again, but this time in $\mathbf{Cat}$ instead of $\mathbf{Top}$. It's possible to set up an adjoint pair of functors between $\mathbf{S}$ and $\mathbf{Cat}$ just like for the adjoint pair $|-| \dashv \Sing$. We will not be needing the left adjoint. What we will be needing from this adjunction, though, is the right adjoint. We define formally
\begin{definition}
\index{nerve}
\label{def:nerve of a category}
Let $\mathbf{C} \in \mathbf{Cat}$ be a small category. We define the \emph{nerve} of $\mathbf{C}$ to be the simplicial set $N\mathbf{C}$ defined for each natural number $n \geq 0$ as the set
\[ (N\mathbf{C})_n := \Hom_{\mathbf{Cat}}\left(\mathbf{n}, \mathbf{C} \right). \]
\end{definition}
Spelled out in detail, this means that the $0$-simplices are the objects of $\mathbf{C}$ (which is indeed a set). If $n>0$, then an $n$-simplex of $(N\mathbf{C})_n$ is an $n$-tuple
\[ A_0 \xrightarrow{f_1} A_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} A_n \]
of composable morphisms $f_i : A_{i-1} \to A_i$. We'll denote such simplices more compactly by $(f_1,\ldots,f_n)$. The face maps
\[ d_j : (N\mathbf{C})_{n} \to (N\mathbf{C})_{n-1} \] compose two consecutive morphisms at the $j$'th position to get an $(n-1)$-tuple of composable morphisms when $0 < j < n$, and they discard the outer morphism when $j = 0$ or $n$. The degeneracy maps
\[ s_j : (N\mathbf{C})_n \to (N \mathbf{C})_{n+1} \]
insert an identity morphism at the $j$'th position to get a degenerate $(n+1)$-tuple.
\section{Star Neighborhoods}
From this point on, the thesis consists of mostly original work, so the proofs become more detailed.
\begin{lemma}
\label{lem:subcomplex is closed subset in the realization}
Let $S \in \mathbf{S}$ be a simplicial complex and $T \subset S$ a subcomplex. Then $|T| \subset |S|$ is a closed set.
\end{lemma}
\begin{proof}
Let $\sigma \in S_n$ be an $n$-simplex of $S$. Let $I$ be the set of all possible faces of $\sigma$ which are contained in $T$. Note that $I$ is a finite set. Therefore $\bigcup_{\tau \in I}|\tau|$ is closed in $|\sigma|$.
\end{proof}
\begin{definition}
\index{star}
\label{def:star of a simplex}
Let $S \in \mathbf{S}$ be a simplicial set, and an $n$-simplex $\sigma \in S_n$. The \emph{star} of $\sigma$, denoted $\st(\sigma)$, is the set of all simplices in $S$ which contain $\sigma$ as an eventual face.
\end{definition}
This means that $\sigma \in S_n$ is an eventual face of some $\tau \in S_m$ with $m>n$ if and only if there exist natural numbers $i_1,i_2,\ldots,i_{m-n}$ such that $\sigma = (d_{i_{m-n}} \circ \cdots \circ d_{i_{2}} \circ d_{i_{1}})(\tau)$. If $m=n$, then $\sigma$ is a face of $\sigma$, so $\sigma \in \st(\sigma)$. If $m < n$, then $S_m \cap \st(\sigma) = \emptyset$. Put in a more functorial way, identify $\sigma$ and $\tau$ as functors $\sigma : \mathbf{\Delta}(-,\mathbf{n}) \to S$ and $\tau : \mathbf{\Delta}(-,\mathbf{m}) \to S$. Then $\sigma$ is an eventual face of $\tau$ if and only if there exists an injective order-preserving map $\theta : \mathbf{n} \to \mathbf{m}$ such that
\begin{equation}
\label{eq:sigma is eventual face of tau diagram}
\begin{tikzcd}
\mathbf{\Delta}(-,\mathbf{n}) \arrow{dr}{\sigma} \arrow[swap]{dd}{\mathbf{\Delta}(-,\theta)} & \\
& S \\
\mathbf{\Delta}(-,\mathbf{m}) \arrow[swap]{ur}{\tau}
\end{tikzcd}
\end{equation}
is a commutative diagram of simplicial sets.
\begin{definition}
\label{def:simplicial set minus a simplex}
Let $S \in \mathbf{S}$ and take an $n$-simplex $\sigma \in S_n$. The simplicial set $S - \sigma$ is defined as follows. For any $n \in \N$, we set
\[ (S-\sigma)_n := \left\{ \tau \in S_n : \tau \not\in \st(\sigma) \right\}. \]
The face and degeneracy maps for $S-\sigma$ are the same as from $S$, and by definition of the star they are well-defined.
\end{definition}
It is obvious that $S - \sigma \subset S$. As a consequence, $|S-\sigma|$ is a closed subspace inside $|S|$ by \cref{lem:subcomplex is closed subset in the realization}.
\begin{definition}
\index{realization of the star}
\label{def:realization of the star}
Let $S \in \mathbf{S}$ be a simplicial set and $\sigma \in S_n$ an $n$-simplex. We define the \emph{realization of the star} $\sigma^* \subset |S|$ as the open subspace $|S| - |S-\sigma|$.
\end{definition}
Observe that if $v \in S_0$ is a $0$-simplex (a vertex), then the only point $p \in v^*$ with the property that $p = |w|$ for some $w \in S_0$ is $v$.
% \begin{definition}
% Let $S \in \mathbf{S}$ be a simplicial set and take a non-degenerate $n$-simplex $\sigma \in S_n$. Identify $|\sigma|$ with its continuous map $\sigma : \Delta^n \to |S|$. Because $\sigma$ is non-degenerate, the map $|\sigma|$ is injective. We define the \emph{interior} of $\sigma$ as the image of $\{(t_0,\ldots,t_n) \in \Delta^n : t_i > 0\}$, denoted by $\Int(\sigma)$. If $\sigma$ is degenerate, there exists a unique non-degenerate $m$-simplex $\tau$ and a surjective order-preserving map $f : [n] \to [m]$ such that $f^* \tau = \sigma$. In particular, $|\tau|$ and $|\sigma|$ give the same realization in $|S|$. We define the \emph{interior} of the degenerate $n$-simplex $\sigma$ as the interior of the non-degenerate $m$-simplex $\tau$.
% \end{definition}
\begin{definition}
\index{interior}
\label{def:interior of a simplex}
Let $S \in \mathbf{S}$ be a simplicial set and take an $n$-simplex $\sigma \in S_n$. Identify the realization of $\sigma$ in $|S|$ with its continuous map $|\sigma| : \Delta^n \to |S|$. We define the \emph{interior} of $\sigma$ as the image of $\{(t_0,\ldots,t_n) \in \Delta^n : t_i > 0,\; i=0,\ldots,n\}$.
\end{definition}
Observe that this definition works fine even for degenerate simplices, and note also that the interior of a $0$-simplex is a point in $|S|$. Note also that the interior of a simplex is not necessarily open in $|S|$. However, we do have
\begin{lemma}
\label{lem:realization of the star is union of the interiors}
Let $\sigma \in S_n$ be an $n$-simplex of a simplicial set $S \in \mathbf{S}$. Then $\sigma^* = \bigcup_{\tau \in \st(\sigma)} \Int(\tau)$.
\end{lemma}
\begin{proof}
The inclusion $\bigcup_{\tau \in \st(\sigma)} \Int(\tau) \subseteq \sigma^*$ is trivial. Let us prove the other inclusion.
Let $p \in \sigma^*$. Then $p \not\in |S-\sigma|$. This means that $p$ is not in the (closed) image of any $m$-simplex $|\tau| : \Delta^m \to |S|$ for which $\sigma$ is \emph{not} an eventual face.
But $p \in |S|$, so what remains is that $p$ is in the image of an $m$-simplex $|\tau| : \Delta^m \to |S|$ for which $\sigma$ is an eventual face.
By \cref{lem:eilenberg-zilber}, we may assume $\tau$ to be non-degenerate.
Let $(t_0,\ldots,t_m) \in \Delta^m$ be the barycentric coordinates such that $|\tau|(t_0,\ldots,t_m) = p$.
If $m=0$ then we are done, so assume $m>0$. If $t_i = 0$ for some $i$, we may replace $\tau$ by its face $d_i \tau$ and replace the barycentric coordinates by $(t_0,\ldots,t_{i-1},t_{i+1},\ldots,t_m)$. After such a replacement, we still have $d_i \tau \in \st(\sigma)$.
Continue in this way until we reach a $k$-simplex $\tau'$, with $k \leq m$, with barycentric coordinates $(t_0,\ldots,t_k)$ with $t_i > 0$ for all $i=0,\ldots,k$.
\end{proof}
\begin{lemma}
\label{lem:realization of the star is contained in the intersection of the realizations of its faces}
Let $n>0$ and take an $n$-simplex $\sigma \in S_n$ in a simplicial set $S \in \mathbf{S}$. Then
\[ \sigma^* \subset \bigcap_{i=0}^n (d_i \sigma)^*. \]
\end{lemma}
\begin{proof}
If $\tau \in \st(\sigma)$, then $\tau$ is eventually a face of $\sigma$, so it's clearly also eventually a face of $d_i \sigma$ for $i=0,\ldots,n$. Hence $\tau \in \bigcap_{i=0}^n \st(d_i \sigma)$. Therefore $\Int(\tau) \subset (d_i \sigma)^*$ for every $i=0,\ldots,n$.
\end{proof}
\begin{lemma}
\label{lem:realization of the star is connected}
Let $S \in \mathbf{S}$. For every $n$-simplex $\sigma \in S_n$, the realization of the star $\sigma^* \subset |S|$ is a connected subset.
\end{lemma}
\begin{proof}
Suppose that we can write $\sigma^* = U \cup V$, where $U$ and $V$ are two disjoint non-empty open subsets of $\sigma^*$. Let $\tau \in \st(\sigma)$. Then $|\tau|$ is a compact connected metric space, so $\Int(\tau)$ is a connected metric space. but $\Int(\tau) = \left(U \cap \Int(\tau) \right) \cup \left(V \cap \Int(\tau) \right)$, so either $\Int(\tau) \subset U$ or $\Int(\tau) \subset V$. Let $I$ be the set of all $\tau \in \st(\sigma)$ for which $\Int(\tau) \subset U$ and let $J$ be the set of all $\tau \in \st(\sigma)$ for which $\Int(\tau) \subset V$. Both $I$ and $J$ are non-empty. By \cref{lem:realization of the star is union of the interiors}, we find a decomposition
\[ \sigma^* = \bigcup_{\tau \in \st(\sigma)} \Int(\tau) = \bigcup_{\tau \in I} \Int(\tau) \cup \bigcup_{\tau \in J} \Int(\tau). \]
Without loss of generality, $\sigma \in I$. If $\tau \in \st(\sigma)$, with $\tau$ an $m$-simplex, $n \leq m$, then there exists a commutative diagram as in \cref{eq:sigma is eventual face of tau diagram}. Thus, we have a commutative diagram of topological spaces and continuous maps
\[ \begin{tikzcd}
\Delta^n \arrow{dr}{|\sigma|} \arrow[swap]{dd}{|\mathbf{\Delta}(-,\theta)|} & \\
& \left| S \right| \\
\Delta^m \arrow[swap]{ur}{|\tau|}
\end{tikzcd} \]
By connectedness of $\Delta^m$ and $\Delta^n$, we have $\tau \in I$. But this holds for arbitrary $\tau$, so $J$ is empty. A contradiction.
\end{proof}
\begin{lemma}
\label{lem:realizations of stars form an open cover}
The realizations of the stars of vertices form an open cover of $|S|$. That is, $|S| = \bigcup_{v \in S_0} v^*$.
\end{lemma}
\begin{proof}
By \cref{lem:realization of the star is union of the interiors},
\[ \bigcup_{v \in S_0}v^* = \bigcup_{v \in S_0} \bigcup_{\tau \in \st(v)} \Int(\tau). \]
The right-hand-side of this equation exhausts all possible simplices of $S$. So it suffices to prove that every point $p \in |S|$ is contained in the interior of some $n$-simplex $\sigma$.
Let $p \in |S|$. Then $p \in |\sigma|$ for some $n$-simplex $\sigma \in S_n$. By \cref{lem:eilenberg-zilber}, there exists a unique non-degenerate $m$-simplex $\tau \in S_m$ and a surjective order-preserving map $f : \mathbf{n} \to \mathbf{m}$, with $m \leq n$, such that $(Sf)(\tau) = \sigma$. Thus $p \in |\tau|$. If $p \in \Int(\tau)$ then we are done. Otherwise, $p \in |d_i \tau|$ for some $i$. Continue in this way. Eventually this process stops.
\end{proof}