-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
257 lines (202 loc) · 10.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import copy
import torch
import pytorch_lightning as pl
import pandas as pd
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
# from optimizer import ScheduledOptim, NoamLR
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.nn import Transformer
from config import CONFIG
def get_mask(seq_len):
mask = torch.triu(torch.ones(seq_len, seq_len),
diagonal=1).to(dtype=torch.bool)
mask = mask.to(CONFIG.device)
return mask
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class PositionalEncoding(nn.Module, ABC):
def __init__(self, seq_len, emb_dim):
super(PositionalEncoding, self).__init__()
self.position_embed = nn.Embedding(seq_len, emb_dim)
def forward(self, seq):
pos = self.position_embed(seq)
return pos
class FeedForwardNetwork(nn.Module, ABC):
def __init__(self, in_feat, drop_val=0.2):
super(FeedForwardNetwork, self).__init__()
self.linear1 = nn.Linear(in_feat, in_feat)
self.linear2 = nn.Linear(in_feat, in_feat)
self.dropout = nn.Dropout(p=drop_val)
def forward(self, x):
out = F.relu(self.dropout(self.linear1(x)))
out = self.linear2(out)
return out
class Encoder(nn.Module, ABC):
def __init__(self, num_dim, num_heads, drop_val=0.2):
super(Encoder, self).__init__()
self.multihead_attention = nn.MultiheadAttention(embed_dim=num_dim,
num_heads=num_heads,
dropout=drop_val)
self.norm_layer1 = nn.LayerNorm(num_dim)
self.norm_layer2 = nn.LayerNorm(num_dim)
self.feed_forward = FeedForwardNetwork(num_dim)
def forward(self, ex_emb):
ex_emb = self.norm_layer1(ex_emb)
ex_emb = ex_emb.permute(1, 0, 2)
attention_out, _ = self.multihead_attention(ex_emb, ex_emb, ex_emb, attn_mask=get_mask(CONFIG.seq_len))
ff_in = ex_emb + attention_out
ff_in = ff_in.permute(1, 0, 2)
ff_in = self.norm_layer2(ff_in)
ff_out = self.feed_forward(ff_in)
out = ff_in + ff_out
return out
class DecoderInput(nn.Module, ABC):
def __init__(self, total_response, emb_dim, positional_encoding):
super(DecoderInput, self).__init__()
self.response_emb = nn.Embedding(total_response, emb_dim)
# saint plus stuff
self.elapsed_time_embedding = nn.Linear(1, emb_dim, bias=False) # excercise1 to response1 continous
self.lag_time_embedding = "" # response1 to exercise2 categorical
self.positional_encoding = positional_encoding
def forward(self, response, elapsed_time): # elapsed_time, lag_time
out = self.response_emb(response)
seq = torch.arange(CONFIG.seq_len, device=CONFIG.device).unsqueeze(0)
pos = self.positional_encoding(seq)
elapsed_time = self.elapsed_time_embedding(elapsed_time)
res_emb = out + pos + elapsed_time
return res_emb
class EncoderInput(nn.Module, ABC):
def __init__(self, total_questions, total_categories, emb_dim, positional_encoding, pretrained_ex_path=None):
super(EncoderInput, self).__init__()
if pretrained_ex_path is not None:
embed_data = np.load(pretrained_ex_path)
_, _, weights = embed_data['pro_repre'], embed_data['skill_repre'], embed_data['pro_final_repre']
embedding_weights = torch.tensor(weights)
self.question_embed = nn.Embedding.from_pretrained(embedding_weights)
self.question_embed.requires_grad_(requires_grad=False)
print("using_pretrained embedding")
else:
self.question_embed = nn.Embedding(total_questions, emb_dim)
self.category_embed = nn.Embedding(total_categories, emb_dim)
self.positional_encoding = positional_encoding
def forward(self, questions, category):
qu_out = self.question_embed(questions)
cat_out = self.category_embed(category)
seq = torch.arange(CONFIG.seq_len, device=CONFIG.device).unsqueeze(0)
pos = self.positional_encoding(seq)
ex_embed = qu_out + cat_out + pos
return ex_embed
class Decoder(nn.Module, ABC):
def __init__(self, num_dim, num_heads, drop_val=0.2):
super(Decoder, self).__init__()
self.multihead_attention1 = nn.MultiheadAttention(embed_dim=num_dim,
num_heads=num_heads,
dropout=drop_val)
self.multihead_attention2 = nn.MultiheadAttention(embed_dim=num_dim,
num_heads=num_heads,
dropout=drop_val)
self.norm_layer1 = nn.LayerNorm(num_dim)
self.norm_layer2 = nn.LayerNorm(num_dim)
self.norm_layer3 = nn.LayerNorm(num_dim)
self.norm_layer4 = nn.LayerNorm(num_dim)
self.feed_forward = FeedForwardNetwork(num_dim)
def forward(self, res_emb, enc_out):
res_emb = res_emb.permute(1, 0, 2)
attn1_in = self.norm_layer1(res_emb)
att1_out, _ = self.multihead_attention1(attn1_in, attn1_in, attn1_in, attn_mask=get_mask(CONFIG.seq_len))
attn2_in = attn1_in + att1_out
# attn2_in = self.norm_layer2(attn2_in)
enc_out = self.norm_layer3(enc_out)
enc_out = enc_out.permute(1, 0, 2)
attn2_out, _ = self.multihead_attention2(attn2_in, enc_out, enc_out, attn_mask=get_mask(CONFIG.seq_len))
ffn_in = enc_out + attn2_out
ffn_in = ffn_in.permute(1, 0, 2)
ffn_in = self.norm_layer4(ffn_in)
ffn_out = self.feed_forward(ffn_in)
out = ffn_in + ffn_out
return out
class SaintPlus(pl.LightningModule):
def __init__(self, total_questions, total_categories, total_response, emb_dim, num_layers,
num_heads, drop_val, pretrained_ex_path):
super(SaintPlus, self).__init__()
self.loss = nn.BCEWithLogitsLoss()
self.pos_enc = PositionalEncoding(CONFIG.seq_len, CONFIG.emb_dim)
self.exercise_embed = EncoderInput(total_questions, total_categories, emb_dim, self.pos_enc,
pretrained_ex_path)
self.response_embed = DecoderInput(total_response, emb_dim, self.pos_enc)
# self.encoder_layers = get_clones(Encoder(emb_dim, num_heads, drop_val), num_layers)
#
# self.decoder_layers = get_clones(Decoder(emb_dim, num_heads, drop_val), num_layers)
self.transformer = nn.Transformer(d_model=CONFIG.emb_dim, dim_feedforward=1024, activation='relu',
num_encoder_layers=CONFIG.num_layers, num_decoder_layers=CONFIG.num_layers,
nhead=CONFIG.heads)
self.fc = nn.Linear(emb_dim, 1) # logits
def forward(self, x, response): # elapsed_time, lag_time
questions, category = x["input_ids"].long().to(CONFIG.device), x['input_cat'].long().to(CONFIG.device)
# elapsed_time = x["input_rtime"].unsqueeze(-1).float()
# ela_time = self.elapsed_time(elapsed_time)
enc_in = self.exercise_embed(questions, category)
# print("encoder old shape:", enc_in.shape)
enc_in = enc_in.permute(1, 0, 2)
# print("encoder new shape:", enc_in.shape)
# for encoder_num in range(len(self.encoder_layers)):
# if encoder_num < 1:
# enc_out = self.encoder_layers[encoder_num](enc_in)
# enc_in = enc_out
# else:
# enc_out = self.encoder_layers[encoder_num](enc_in)
# enc_in = enc_out
elapsed_time = x["input_rtime"].unsqueeze(-1).float()
dec_in = self.response_embed(response.long().to(CONFIG.device), elapsed_time)
# print("decoder old shpae:", dec_in.shape)
dec_in = dec_in.permute(1, 0, 2)
# print("decoder new shpae:",dec_in.shape)
mask = get_mask(CONFIG.seq_len)
# print(mask.shape)
# for decoder_num in range(len(self.decoder_layers)):
# if decoder_num < 1:
# dec_out = self.decoder_layers[decoder_num](dec_in, enc_out)
# dec_in = dec_out
# else:
# dec_out = self.decoder_layers[decoder_num](dec_in, enc_out)
# dec_in = dec_out
#
# out = self.fc(dec_out)
out = self.transformer(enc_in, dec_in, src_mask=mask, tgt_mask=mask, memory_mask=mask)
out = out.permute(1, 0, 2)
out = self.fc(out)
out = out.squeeze()
return out
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=5e-4)
# scheduler = NoamLR(optimizer, CONFIG.emb_dim, CONFIG.warmpup_steps)
return optimizer
def training_step(self, batch, batch_ids):
input, ans, labels = batch
target_mask = (input["input_ids"] != 0)
out = self(input, ans)
loss = self.loss(out.view(-1).float(), labels.view(-1).float())
out = torch.masked_select(out, target_mask)
out = torch.sigmoid(out)
labels = torch.masked_select(labels, target_mask)
self.log("train_loss", loss, on_step=True, prog_bar=True)
return {"loss": loss, "outs": out, "labels": labels}
def validation_step(self, batch, batch_ids):
input, ans, labels = batch
target_mask = (input["input_ids"] != 0)
out = self(input, ans)
loss = self.loss(out.view(-1).float(), labels.view(-1).float())
out = torch.masked_select(out, target_mask)
out = torch.sigmoid(out)
labels = torch.masked_select(labels, target_mask)
self.log("val_loss", loss, on_step=True, prog_bar=True)
output = {"outs": out, "labels": labels}
return output
def validation_epoch_end(self, validation_ouput):
out = torch.cat([i["outs"] for i in validation_ouput]).view(-1)
labels = torch.cat([i["labels"] for i in validation_ouput]).view(-1)
auc = roc_auc_score(labels.cpu().detach().numpy(), out.cpu().detach().numpy())
self.print("val auc", auc)