diff --git a/Data Cleanup.ipynb b/Data Cleanup.ipynb index 2cbfed2..74bc9d7 100644 --- a/Data Cleanup.ipynb +++ b/Data Cleanup.ipynb @@ -2,11 +2,11 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 24, "metadata": { "ExecuteTime": { - "end_time": "2018-03-29T02:29:10.637998Z", - "start_time": "2018-03-29T02:29:08.722805Z" + "end_time": "2018-03-30T01:25:57.804317Z", + "start_time": "2018-03-30T01:25:57.794581Z" } }, "outputs": [], @@ -16,16 +16,35 @@ "\n", "DUMMY_DATA_PATH = 'dataset/dummy/'\n", "DUMMY_BANK_DATA = DUMMY_DATA_PATH+'BSA.csv'\n", - "DUMMY_MAIN_DATA = DUMMY_DATA_PATH+'data.csv'" + "DUMMY_MAIN_DATA = DUMMY_DATA_PATH+'data.csv'\n", + "\n", + "FINAL_DATA = 'dataset/loan.csv'\n", + "TRAIN_DATA = 'dataset/loan_one_hot_encoded.csv'" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "ExecuteTime": { + "end_time": "2018-03-30T01:25:57.847620Z", + "start_time": "2018-03-30T01:25:57.808610Z" + } + }, + "outputs": [], + "source": [ + "PUBLIC_EMAIL_DOMAINS = ()\n", + "with open('public-email-domains.txt', 'r') as f:\n", + " PUBLIC_EMAIL_DOMAINS = tuple(d.strip() for d in f.readlines())" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 26, "metadata": { "ExecuteTime": { - "end_time": "2018-03-29T02:29:11.492651Z", - "start_time": "2018-03-29T02:29:11.354573Z" + "end_time": "2018-03-30T01:25:57.898990Z", + "start_time": "2018-03-30T01:25:57.852012Z" } }, "outputs": [], @@ -36,11 +55,11 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 27, "metadata": { "ExecuteTime": { - "end_time": "2018-03-29T02:29:11.997304Z", - "start_time": "2018-03-29T02:29:11.911392Z" + "end_time": "2018-03-30T01:25:58.013508Z", + "start_time": "2018-03-30T01:25:57.902458Z" } }, "outputs": [ @@ -69,14 +88,14 @@ "
5 rows × 25 columns
\n", + "5 rows × 23 columns
\n", "" ], "text/plain": [ - " ads_matchtype ads_network amount application_id birthdate \\\n", - "0 NaN NaN NaN 1024.0 NaN \n", - "1 NaN NaN 300000.0 716.0 23/10/1982 \n", - "2 NaN NaN 200000.0 1031.0 08/09/1987 \n", - "3 e {google_search} 300000.0 2056.0 02/04/1982 \n", - "4 NaN NaN 500000.0 9047.0 13/04/1979 \n", - "\n", - " browser campaign_city city company_size \\\n", - "0 Opera NaN NaN NaN \n", - "1 Chrome NaN NaN NaN \n", - "2 Chrome NaN NaN NaN \n", - "3 Chrome Pune Mumbai 5.0 \n", - "4 Chrome NaN Mumbai NaN \n", + " ads_matchtype ads_network amount application_id browser \\\n", + "0 NaN NaN NaN 1024.0 Opera \n", + "1 NaN NaN 300000.0 716.0 Chrome \n", + "2 NaN NaN 200000.0 1031.0 Chrome \n", + "3 e {google_search} 300000.0 2056.0 Chrome \n", + "4 NaN NaN 500000.0 9047.0 Chrome \n", "\n", - " email ... \\\n", - "0 Kaif1779@gmail.com ... \n", - "1 vihanmarketing36@gmail.com ... \n", - "2 faijiyatoursandtravels@gmail.com ... \n", - "3 sagarnk2008@gmail.com ... \n", - "4 natrajmoily@gmail.com ... \n", + " campaign_city city company_size email \\\n", + "0 NaN NaN NaN Kaif1779@gmail.com \n", + "1 NaN NaN NaN vihanmarketing36@gmail.com \n", + "2 NaN NaN NaN faijiyatoursandtravels@gmail.com \n", + "3 Pune Mumbai 5.0 sagarnk2008@gmail.com \n", + "4 NaN Mumbai NaN natrajmoily@gmail.com \n", "\n", - " network platform \\\n", - "0 Opera Software Americas LLC mobile:Pike v8.0 release 461 \n", - "1 Idea Cellular Limited Win32 \n", - "2 Idea Cellular Limited mobile:Linux armv8l \n", - "3 Reliance Jio Infocomm Limited mobile:Linux aarch64 \n", - "4 Syscon Infoway Pvt. Ltd. mobile:Linux armv8l \n", + " firm_type ... loan_created \\\n", + "0 NaN ... 0 \n", + "1 Proprietorship ... 1 \n", + "2 Proprietorship ... 0 \n", + "3 Proprietorship ... 0 \n", + "4 Proprietorship ... 0 \n", "\n", - " registered_office_city registered_office_state role_in_firm \\\n", - "0 NaN NaN NaN \n", - "1 Gondia MAHARASHTRA 1.0 \n", - "2 PUNE MAHARASHTRA 1.0 \n", - "3 Pune MAHARASHTRA 1.0 \n", - "4 THANE MAHARASHTRA 1.0 \n", + " platform registered_office_city \\\n", + "0 mobile:Pike v8.0 release 461 NaN \n", + "1 Win32 Gondia \n", + "2 mobile:Linux armv8l PUNE \n", + "3 mobile:Linux aarch64 Pune \n", + "4 mobile:Linux armv8l THANE \n", "\n", - " role_on_application state utm_medium utm_source \\\n", - "0 0 NaN NaN NaN \n", - "1 4 MAHARASHTRA NaN NaN \n", - "2 4 MAHARASHTRA NaN NaN \n", - "3 4 KARNATAKA ppc adwords \n", - "4 4 MAHARASHTRA Banner Facebook \n", + " registered_office_state role_in_firm role_on_application state \\\n", + "0 NaN NaN 0 NaN \n", + "1 MAHARASHTRA 1.0 4 MAHARASHTRA \n", + "2 MAHARASHTRA 1.0 4 MAHARASHTRA \n", + "3 MAHARASHTRA 1.0 4 KARNATAKA \n", + "4 MAHARASHTRA 1.0 4 MAHARASHTRA \n", "\n", - " year_of_incorporation \n", - "0 NaN \n", - "1 2014.0 \n", - "2 2016.0 \n", - "3 2014.0 \n", - "4 2014.0 \n", + " utm_medium utm_source year_of_incorporation \n", + "0 NaN NaN NaN \n", + "1 NaN NaN 2014.0 \n", + "2 NaN NaN 2016.0 \n", + "3 ppc adwords 2014.0 \n", + "4 Banner Facebook 2014.0 \n", "\n", - "[5 rows x 25 columns]" + "[5 rows x 23 columns]" ] }, - "execution_count": 3, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -301,7 +313,7 @@ "# 'loan_created', # THIS IS OUR TARGET! THIS IS SKEWED, SO A NAIVE IMPL WILL ALSO HAVE 96% ACCURACY :D \n", " 'longitude', # see comment for 'latitude'\n", " 'name', # see comment for firm name\n", - "# 'network',\n", + " 'network', # don't need it.. too many random values.. \n", " 'pan', # unique for each individual, NOTE: there is a pattern than can be used to extract features!! (TODO)\n", " 'pincode',\n", "# 'platform',\n", @@ -323,19 +335,20 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 28, "metadata": { "ExecuteTime": { - "end_time": "2018-03-29T02:33:17.414224Z", - "start_time": "2018-03-29T02:33:17.363625Z" - } + "end_time": "2018-03-30T01:25:58.293820Z", + "start_time": "2018-03-30T01:25:58.018503Z" + }, + "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "432 25\n" + "432 23\n" ] } ], @@ -347,27 +360,208 @@ "- [ ] browser: some really low counts\n", "- [ ] campaign_city: some really low counts\n", "- [ ] city: some really low counts\n", - "- [ ] email: publicly hosted email domain or personal email domain\n", + "- [x] email: publicly hosted email domain or personal email domain\n", "- [ ] firm_type: is skewed (need to figure things out..)\n", - "- [ ] last_fy_profit: convert 0 to NaNs\n", - "- [ ] platform: combine all the 'mobile:Linux'?\n", - "- [ ] registered_office_city: combine same values (cases are different hence are treated as separate values)\n", + "- [x] last_fy_profit: convert 0 to NaNs\n", + "- [x] platform: combine all the 'mobile:Linux'?\n", + "- [x] registered_office_city: combine same values (cases are different hence are treated as separate values)\n", "- [ ] role_in_firm: categorical; so don't use the numbers as is..\n", "- [ ] role_on_application: categorical; so don't use the numbers as is..\n", - "- [ ] year_of_incorporation: -> compute age of firm\n", + "- [x] year_of_incorporation: -> compute age of firm\n", "'''\n", - "print(len(main_df), len(list(main_df)))\n", + "# remove 0 amounts\n", + "main_df.loc[main_df['amount'] == 0, 'amount'] = np.NAN\n", + "\n", + "# create a boolean column\n", + "main_df['private_email_domain'] = False\n", + "for index, row in main_df.iterrows():\n", + " email = row['email']\n", + " if email is not np.NaN and email.split('@')[1] not in PUBLIC_EMAIL_DOMAINS:\n", + " main_df.loc[index, 'private_email_domain'] = True\n", + "main_df = main_df.drop(columns=['email']) # drop email column\n", + "\n", + "# remove 0 last_fy_profit\n", + "main_df.loc[main_df['last_fy_profit'] == 0, 'last_fy_profit'] = np.NAN\n", + "\n", + "# make all text uppercase in registered_office_city\n", + "main_df['registered_office_city'] = main_df['registered_office_city'].str.upper()\n", + "\n", + "# compute age of firm\n", + "# main_df.loc[main_df['year_of_incorporation'] == 0, 'year_of_incorporation'] = np.NAN\n", + "main_df['age_of_firm'] = np.nan\n", + "def compute_age_of_firm(x):\n", + " if x is np.nan:\n", + " return np.nan\n", + " elif type(x) == str:\n", + " if '/' in x:\n", + " x = x.split('/')[1].split('.')[0].strip('., ')\n", + " x = x.split('.')[0].strip('., ')\n", + " x = int(x)\n", + " if 2018-x == 2018:\n", + " return np.nan\n", + " return 2018-x\n", + " else:\n", + " return x\n", + "main_df['age_of_firm'] = list(map(compute_age_of_firm, main_df['year_of_incorporation']))\n", + "main_df = main_df.drop(columns=['year_of_incorporation']) # drop email column\n", + "\n", + "# strip the redundant brace brakets around the ads_network\n", + "main_df['ads_network'] = list(map(lambda x: x.strip('}{') if type(x) == str else x, main_df['ads_network']))\n", + "\n", + "# platform: combine all the 'mobile:Linux'?\n", + "main_df['platform'] = list(map(lambda x: 'mobile:Linux' if type(x) == str and 'mobile:Linux' in x else x, main_df['platform']))\n", + "\n", + "print(len(main_df), len(list(main_df)))" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "ExecuteTime": { + "end_time": "2018-03-30T01:25:58.310947Z", + "start_time": "2018-03-30T01:25:58.301339Z" + } + }, + "outputs": [], + "source": [ + "# # only keep applications that are in both data sets\n", + "# appln_id = pd.Series(list(set(main_df['application_id']) & set(bank_df['application_id'])))\n", + "# main_df = main_df.loc[main_df['application_id'].isin(appln_id)]\n", + "# bank_df = bank_df.loc[bank_df['application_id'].isin(appln_id)]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "ExecuteTime": { + "end_time": "2018-03-30T01:25:58.352141Z", + "start_time": "2018-03-30T01:25:58.317396Z" + } + }, + "outputs": [], + "source": [ + "# list(bank_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "ExecuteTime": { + "end_time": "2018-03-30T01:25:58.958612Z", + "start_time": "2018-03-30T01:25:58.357356Z" + } + }, + "outputs": [], + "source": [ + "def _aggregate_columns(df, application_id_col):\n", + " # group by application id and merge all rows into lists\n", + " new_df = pd.DataFrame()\n", + " g = bank_df.groupby(application_id_col)\n", + " for k in list(df):\n", + " if k == application_id_col:\n", + " continue\n", + " new_df = pd.concat([new_df, g[k].apply(list)], axis=1)\n", + " return new_df.reset_index()\n", + "\n", + "\n", + "def setup_aggregations(df, application_id_col):\n", + " '''\n", + " fix bank data (for applications with multiple rows)\n", + " - average the averages\n", + " - add high_credit_cp\n", + " - add invard returns\n", + " - max of all the maxs\n", + " - min of all the mins\n", + " - add outward_returns\n", + " - drop totals (because average is better and normalized)\n", + " '''\n", + " df = df.drop(columns=['total_business_inflow', 'total_business_outflow', 'total_inflow', 'total_outflow'])\n", + " df = _aggregate_columns(df, application_id_col)\n", + " new_df = pd.DataFrame()\n", + " for k in list(df):\n", + " if k == application_id_col:\n", + " new_df = pd.concat([new_df, df[k]], axis=1)\n", + " elif 'average' in k:\n", + " new_df = pd.concat([new_df, df[k].apply(np.average)], axis=1)\n", + " elif 'max' in k:\n", + " new_df = pd.concat([new_df, df[k].apply(np.max)], axis=1)\n", + " elif 'min' in k:\n", + " new_df = pd.concat([new_df, df[k].apply(np.min)], axis=1)\n", + " else:\n", + " new_df = pd.concat([new_df, df[k].apply(np.sum)], axis=1)\n", + " return new_df\n", "\n", - "main_df.loc[main_df['amount'] == 0, 'amount'] = np.NAN" + "bank_df = setup_aggregations(bank_df, 'application_id')" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "ExecuteTime": { + "end_time": "2018-03-30T01:25:58.971549Z", + "start_time": "2018-03-30T01:25:58.963296Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "230 16\n" + ] + } + ], + "source": [ + "print(len(bank_df), len(list(bank_df)))" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "ExecuteTime": { + "end_time": "2018-03-30T01:25:58.993300Z", + "start_time": "2018-03-30T01:25:58.977102Z" + } + }, + "outputs": [], + "source": [ + "df = pd.merge(main_df, bank_df, on='application_id')" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "ExecuteTime": { + "end_time": "2018-03-30T01:25:59.031417Z", + "start_time": "2018-03-30T01:25:58.998453Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "230 38\n" + ] + } + ], + "source": [ + "print(len(df), len(list(df)))" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 35, "metadata": { "ExecuteTime": { - "end_time": "2018-03-29T02:33:33.797848Z", - "start_time": "2018-03-29T02:33:33.772428Z" + "end_time": "2018-03-30T01:25:59.093342Z", + "start_time": "2018-03-30T01:25:59.039687Z" } }, "outputs": [ @@ -396,157 +590,2261 @@ "0 rows × 25 columns
\n", + "5 rows × 38 columns
\n", "" ], "text/plain": [ - "Empty DataFrame\n", - "Columns: [ads_matchtype, ads_network, amount, application_id, birthdate, browser, campaign_city, city, company_size, email, firm_type, gender, industry, last_fy_profit, loan_created, network, platform, registered_office_city, registered_office_state, role_in_firm, role_on_application, state, utm_medium, utm_source, year_of_incorporation]\n", - "Index: []\n", + " ads_matchtype ads_network amount application_id browser \\\n", + "0 NaN NaN 200000.0 1031 Chrome \n", + "1 e google_search 300000.0 2056 Chrome \n", + "2 NaN NaN 500000.0 9047 Chrome \n", + "3 NaN google_display 500000.0 2068 Chrome \n", + "4 b google_search 500000.0 2737 Chrome \n", + "\n", + " campaign_city city company_size firm_type gender ... \\\n", + "0 NaN NaN NaN Proprietorship Male ... \n", + "1 Pune Mumbai 5.0 Proprietorship Male ... \n", + "2 NaN Mumbai NaN Proprietorship Male ... \n", + "3 NaN Mumbai 5.0 Proprietorship Male ... \n", + "4 Jaipur Ajmer 5.0 Proprietorship Male ... \n", + "\n", + " inward_returns max_business_inflow max_business_outflow max_inflow \\\n", + "0 2 502725 570348 502725 \n", + "1 0 159971 159356 159971 \n", + "2 0 134835 133462 134835 \n", + "3 0 879035 780395 879035 \n", + "4 0 373105 285950 373105 \n", "\n", - "[0 rows x 25 columns]" + " max_outflow min_business_inflow min_business_outflow min_inflow \\\n", + "0 502725 35981 24331 35981 \n", + "1 159971 43826 47157 43826 \n", + "2 134835 0 0 0 \n", + "3 879035 21 31236 21 \n", + "4 373105 22000 30008 22000 \n", + "\n", + " min_outflow outward_returns \n", + "0 35981 0 \n", + "1 43826 0 \n", + "2 0 0 \n", + "3 21 0 \n", + "4 22000 3 \n", + "\n", + "[5 rows x 38 columns]" ] }, - "execution_count": 13, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-03-28T21:41:02.961905Z", - "start_time": "2018-03-28T21:41:02.944388Z" - }, - "scrolled": true - }, - "outputs": [], "source": [ - "# list(main_df)\n", - "main_df['year_of_incorporation'].sort_values().value_counts()" + "df.head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": { "ExecuteTime": { - "end_time": "2018-03-28T21:44:00.401287Z", - "start_time": "2018-03-28T21:44:00.382401Z" + "end_time": "2018-03-30T01:25:59.120310Z", + "start_time": "2018-03-30T01:25:59.100882Z" } }, "outputs": [], "source": [ - "# only keep applications that are in both data sets\n", - "appln_id = pd.Series(list(set(main_df['application_id']) & set(bank_df['application_id'])))\n", - "main_df = main_df.loc[main_df['application_id'].isin(appln_id)]\n", - "bank_df = bank_df.loc[bank_df['application_id'].isin(appln_id)]" + "df.to_csv(FINAL_DATA, index=False)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": { "ExecuteTime": { - "end_time": "2018-03-28T21:44:00.579850Z", - "start_time": "2018-03-28T21:44:00.566154Z" + "end_time": "2018-03-30T01:25:59.233405Z", + "start_time": "2018-03-30T01:25:59.126551Z" } }, "outputs": [], "source": [ - "list(bank_df)" + "categorical_cols = [\n", + " 'ads_matchtype',\n", + " 'ads_network',\n", + "# 'amount',\n", + "# 'application_id',\n", + " 'browser',\n", + " 'campaign_city',\n", + " 'city',\n", + "# 'company_size',\n", + " 'firm_type',\n", + " 'gender',\n", + " 'industry',\n", + "# 'last_fy_profit',\n", + "# 'loan_created',\n", + " 'platform',\n", + " 'registered_office_city',\n", + " 'registered_office_state',\n", + " 'role_in_firm',\n", + " 'role_on_application',\n", + " 'state',\n", + " 'utm_medium',\n", + " 'utm_source',\n", + " 'private_email_domain',\n", + "# 'age_of_firm',\n", + "# 'average_business_inflow',\n", + "# 'average_business_outflow',\n", + "# 'average_inflow',\n", + "# 'average_outflow',\n", + "# 'high_inflow_cp',\n", + "# 'inward_returns',\n", + "# 'max_business_inflow',\n", + "# 'max_business_outflow',\n", + "# 'max_inflow',\n", + "# 'max_outflow',\n", + "# 'min_business_inflow',\n", + "# 'min_business_outflow',\n", + "# 'min_inflow',\n", + "# 'min_outflow',\n", + "# 'outward_returns'\n", + "]\n", + "\n", + "for col in categorical_cols:\n", + " oh = pd.get_dummies(df[col], prefix=col)\n", + " df = df.join(oh)\n", + "df = df.drop(columns=categorical_cols)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": { "ExecuteTime": { - "end_time": "2018-03-28T21:44:01.613870Z", - "start_time": "2018-03-28T21:44:01.144643Z" + "end_time": "2018-03-30T01:25:59.374441Z", + "start_time": "2018-03-30T01:25:59.237261Z" } }, - "outputs": [], - "source": [ - "def _aggregate_columns(df, application_id_col):\n", - " # group by application id and merge all rows into lists\n", - " new_df = pd.DataFrame()\n", - " g = bank_df.groupby(application_id_col)\n", - " for k in list(df):\n", - " if k == application_id_col:\n", - " continue\n", - " new_df = pd.concat([new_df, g[k].apply(list)], axis=1)\n", - " return new_df.reset_index()\n", - "\n", - "\n", - "def setup_aggregations(df, application_id_col):\n", - " '''\n", - " fix bank data (for applications with multiple rows)\n", - " - average the averages\n", - " - add high_credit_cp\n", - " - add invard returns\n", - " - max of all the maxs\n", - " - min of all the mins\n", - " - add outward_returns\n", - " - drop totals (because average is better and normalized)\n", - " '''\n", - " df = df.drop(columns=['total_business_inflow', 'total_business_outflow', 'total_inflow', 'total_outflow'])\n", - " df = _aggregate_columns(df, application_id_col)\n", - " new_df = pd.DataFrame()\n", - " for k in list(df):\n", - " if k == application_id_col:\n", - " new_df = pd.concat([new_df, df[k]], axis=1)\n", - " elif 'average' in k:\n", - " new_df = pd.concat([new_df, df[k].apply(np.average)], axis=1)\n", - " elif 'max' in k:\n", - " new_df = pd.concat([new_df, df[k].apply(np.max)], axis=1)\n", - " elif 'min' in k:\n", - " new_df = pd.concat([new_df, df[k].apply(np.min)], axis=1)\n", - " else:\n", - " new_df = pd.concat([new_df, df[k].apply(np.sum)], axis=1)\n", - " return new_df\n", - "\n", - "bank_df = setup_aggregations(bank_df, 'application_id')" + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " | amount | \n", + "application_id | \n", + "company_size | \n", + "last_fy_profit | \n", + "loan_created | \n", + "age_of_firm | \n", + "average_business_inflow | \n", + "average_business_outflow | \n", + "average_inflow | \n", + "average_outflow | \n", + "... | \n", + "state_TELANGANA | \n", + "state_UTTAR PRADESH | \n", + "state_WEST BENGAL | \n", + "state_madhya pradesh | \n", + "utm_medium_Banner | \n", + "utm_medium_ppc | \n", + "utm_source_Facebook | \n", + "utm_source_adwords | \n", + "private_email_domain_False | \n", + "private_email_domain_True | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "200000.0 | \n", + "1031 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "2.0 | \n", + "1.647250e+05 | \n", + "1.640400e+05 | \n", + "1.647250e+05 | \n", + "1.647250e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
1 | \n", + "300000.0 | \n", + "2056 | \n", + "5.0 | \n", + "341068.0 | \n", + "0 | \n", + "4.0 | \n", + "9.122000e+04 | \n", + "9.162500e+04 | \n", + "9.122000e+04 | \n", + "9.122000e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
2 | \n", + "500000.0 | \n", + "9047 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "4.0 | \n", + "4.212600e+04 | \n", + "4.729200e+04 | \n", + "4.212600e+04 | \n", + "4.212600e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
3 | \n", + "500000.0 | \n", + "2068 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "4.0 | \n", + "2.466550e+05 | \n", + "2.644910e+05 | \n", + "2.466550e+05 | \n", + "2.466550e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
4 | \n", + "500000.0 | \n", + "2737 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "4.0 | \n", + "9.678400e+04 | \n", + "9.549800e+04 | \n", + "9.678400e+04 | \n", + "9.678400e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
5 | \n", + "400000.0 | \n", + "3126 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "5.0 | \n", + "6.500300e+04 | \n", + "6.717000e+04 | \n", + "6.500300e+04 | \n", + "6.500300e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
6 | \n", + "600000.0 | \n", + "1081 | \n", + "5.0 | \n", + "319713.0 | \n", + "0 | \n", + "NaN | \n", + "1.118550e+05 | \n", + "1.106320e+05 | \n", + "1.118550e+05 | \n", + "1.118550e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
7 | \n", + "300000.0 | \n", + "5178 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "NaN | \n", + "4.463800e+04 | \n", + "4.341500e+04 | \n", + "4.463800e+04 | \n", + "4.463800e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
8 | \n", + "500000.0 | \n", + "1084 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "2.0 | \n", + "2.366100e+04 | \n", + "2.257600e+04 | \n", + "2.366100e+04 | \n", + "2.366100e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
9 | \n", + "1000000.0 | \n", + "6281 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "3.0 | \n", + "2.279537e+05 | \n", + "2.259997e+05 | \n", + "2.279537e+05 | \n", + "2.279537e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "
10 | \n", + "1000000.0 | \n", + "1090 | \n", + "11.0 | \n", + "NaN | \n", + "0 | \n", + "NaN | \n", + "3.209850e+05 | \n", + "3.235200e+05 | \n", + "3.209850e+05 | \n", + "3.209850e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
11 | \n", + "500000.0 | \n", + "1103 | \n", + "10.0 | \n", + "462252.0 | \n", + "1 | \n", + "NaN | \n", + "9.351550e+04 | \n", + "9.289650e+04 | \n", + "9.351550e+04 | \n", + "9.351550e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
12 | \n", + "300000.0 | \n", + "9059 | \n", + "NaN | \n", + "350000.0 | \n", + "0 | \n", + "3.0 | \n", + "1.135960e+05 | \n", + "1.457707e+05 | \n", + "1.135960e+05 | \n", + "1.135960e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
13 | \n", + "300000.0 | \n", + "8834 | \n", + "NaN | \n", + "400000.0 | \n", + "0 | \n", + "6.0 | \n", + "2.527170e+05 | \n", + "2.526390e+05 | \n", + "2.527170e+05 | \n", + "2.527170e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
14 | \n", + "500000.0 | \n", + "2137 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "2.0 | \n", + "2.401870e+05 | \n", + "2.389370e+05 | \n", + "2.401870e+05 | \n", + "2.401870e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
15 | \n", + "500000.0 | \n", + "5211 | \n", + "5.0 | \n", + "242780.0 | \n", + "0 | \n", + "3.0 | \n", + "3.173480e+05 | \n", + "3.285140e+05 | \n", + "3.173480e+05 | \n", + "3.173480e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
16 | \n", + "500000.0 | \n", + "9061 | \n", + "NaN | \n", + "2434080.0 | \n", + "0 | \n", + "3.0 | \n", + "3.447220e+05 | \n", + "3.387640e+05 | \n", + "3.447220e+05 | \n", + "3.447220e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
17 | \n", + "1000000.0 | \n", + "4199 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "4.0 | \n", + "2.652950e+04 | \n", + "2.744150e+04 | \n", + "2.652950e+04 | \n", + "2.652950e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
18 | \n", + "300000.0 | \n", + "3178 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "2.0 | \n", + "6.871790e+05 | \n", + "6.869310e+05 | \n", + "6.871790e+05 | \n", + "6.871790e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
19 | \n", + "1000000.0 | \n", + "1143 | \n", + "11.0 | \n", + "NaN | \n", + "0 | \n", + "3.0 | \n", + "1.220400e+04 | \n", + "1.120500e+04 | \n", + "1.220400e+04 | \n", + "1.220400e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
20 | \n", + "500000.0 | \n", + "4228 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "3.0 | \n", + "5.794920e+05 | \n", + "5.788810e+05 | \n", + "5.794920e+05 | \n", + "5.794920e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
21 | \n", + "1000000.0 | \n", + "1158 | \n", + "11.0 | \n", + "NaN | \n", + "0 | \n", + "7.0 | \n", + "6.861212e+06 | \n", + "6.900142e+06 | \n", + "6.861212e+06 | \n", + "6.861212e+06 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "
22 | \n", + "300000.0 | \n", + "1159 | \n", + "10.0 | \n", + "NaN | \n", + "0 | \n", + "5.0 | \n", + "1.824030e+05 | \n", + "1.840570e+05 | \n", + "1.824030e+05 | \n", + "1.824030e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
23 | \n", + "300000.0 | \n", + "4233 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "NaN | \n", + "1.062137e+05 | \n", + "1.062613e+05 | \n", + "1.062137e+05 | \n", + "1.062137e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
24 | \n", + "1000000.0 | \n", + "5268 | \n", + "10.0 | \n", + "1230412.0 | \n", + "0 | \n", + "NaN | \n", + "9.640510e+05 | \n", + "9.628270e+05 | \n", + "9.640510e+05 | \n", + "9.640510e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
25 | \n", + "500000.0 | \n", + "3229 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "3.0 | \n", + "3.089860e+05 | \n", + "3.088210e+05 | \n", + "3.089860e+05 | \n", + "3.089860e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
26 | \n", + "500000.0 | \n", + "4255 | \n", + "5.0 | \n", + "360000.0 | \n", + "0 | \n", + "3.0 | \n", + "2.321530e+05 | \n", + "2.316730e+05 | \n", + "2.321530e+05 | \n", + "2.321530e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
27 | \n", + "200000.0 | \n", + "5289 | \n", + "NaN | \n", + "411644.0 | \n", + "0 | \n", + "9.0 | \n", + "7.781100e+04 | \n", + "6.834200e+04 | \n", + "7.781100e+04 | \n", + "7.781100e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
28 | \n", + "500000.0 | \n", + "3620 | \n", + "5.0 | \n", + "553752.0 | \n", + "0 | \n", + "4.0 | \n", + "1.617640e+05 | \n", + "1.562800e+05 | \n", + "1.617640e+05 | \n", + "1.617640e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
29 | \n", + "1000000.0 | \n", + "2224 | \n", + "11.0 | \n", + "351478.0 | \n", + "0 | \n", + "2.0 | \n", + "1.128120e+05 | \n", + "1.126340e+05 | \n", + "1.128120e+05 | \n", + "1.128120e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
200 | \n", + "1000000.0 | \n", + "4986 | \n", + "10.0 | \n", + "NaN | \n", + "0 | \n", + "10.0 | \n", + "1.327260e+05 | \n", + "1.325810e+05 | \n", + "1.327260e+05 | \n", + "1.327260e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
201 | \n", + "500000.0 | \n", + "1343 | \n", + "10.0 | \n", + "NaN | \n", + "0 | \n", + "4.0 | \n", + "1.357450e+05 | \n", + "1.357450e+05 | \n", + "1.357450e+05 | \n", + "1.357450e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
202 | \n", + "500000.0 | \n", + "3964 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "9.0 | \n", + "5.548440e+05 | \n", + "5.545230e+05 | \n", + "5.548440e+05 | \n", + "5.548440e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
203 | \n", + "1000000.0 | \n", + "1856 | \n", + "5.0 | \n", + "707174.0 | \n", + "0 | \n", + "6.0 | \n", + "5.661350e+05 | \n", + "5.719570e+05 | \n", + "5.661350e+05 | \n", + "5.661350e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
204 | \n", + "1000000.0 | \n", + "7327 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "4.0 | \n", + "1.855910e+05 | \n", + "1.858975e+05 | \n", + "1.855910e+05 | \n", + "1.855910e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
205 | \n", + "300000.0 | \n", + "4872 | \n", + "11.0 | \n", + "273416.0 | \n", + "0 | \n", + "NaN | \n", + "6.601200e+04 | \n", + "8.239350e+04 | \n", + "6.601200e+04 | \n", + "6.601200e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
206 | \n", + "300000.0 | \n", + "9107 | \n", + "NaN | \n", + "503006.0 | \n", + "0 | \n", + "19.0 | \n", + "8.720900e+04 | \n", + "8.780200e+04 | \n", + "8.786700e+04 | \n", + "8.786700e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
207 | \n", + "500000.0 | \n", + "9109 | \n", + "NaN | \n", + "295850.0 | \n", + "0 | \n", + "11.0 | \n", + "2.908670e+05 | \n", + "3.349475e+05 | \n", + "3.334265e+05 | \n", + "3.334265e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
208 | \n", + "300000.0 | \n", + "9113 | \n", + "NaN | \n", + "400000.0 | \n", + "0 | \n", + "5.0 | \n", + "1.731960e+05 | \n", + "1.831990e+05 | \n", + "1.834930e+05 | \n", + "1.834930e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
209 | \n", + "500000.0 | \n", + "2972 | \n", + "10.0 | \n", + "NaN | \n", + "0 | \n", + "3.0 | \n", + "1.102355e+05 | \n", + "8.094250e+04 | \n", + "1.102355e+05 | \n", + "1.102355e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
210 | \n", + "500000.0 | \n", + "5026 | \n", + "10.0 | \n", + "NaN | \n", + "0 | \n", + "NaN | \n", + "2.854230e+05 | \n", + "2.833280e+05 | \n", + "2.854230e+05 | \n", + "2.854230e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
211 | \n", + "500000.0 | \n", + "1956 | \n", + "5.0 | \n", + "286850.0 | \n", + "0 | \n", + "3.0 | \n", + "1.728560e+05 | \n", + "1.749340e+05 | \n", + "1.728560e+05 | \n", + "1.728560e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
212 | \n", + "1000000.0 | \n", + "1962 | \n", + "5.0 | \n", + "320000.0 | \n", + "0 | \n", + "5.0 | \n", + "7.370620e+05 | \n", + "7.390440e+05 | \n", + "7.370620e+05 | \n", + "7.370620e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
213 | \n", + "500000.0 | \n", + "9133 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "4.0 | \n", + "1.629150e+05 | \n", + "1.596030e+05 | \n", + "1.629150e+05 | \n", + "1.629150e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
214 | \n", + "100000.0 | \n", + "4253 | \n", + "11.0 | \n", + "NaN | \n", + "0 | \n", + "3.0 | \n", + "1.360880e+05 | \n", + "1.379060e+05 | \n", + "1.360880e+05 | \n", + "1.360880e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
215 | \n", + "1000000.0 | \n", + "4020 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "12.0 | \n", + "2.546000e+04 | \n", + "2.454400e+04 | \n", + "2.546000e+04 | \n", + "2.546000e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
216 | \n", + "300000.0 | \n", + "8862 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "4.0 | \n", + "3.918100e+04 | \n", + "4.155500e+04 | \n", + "3.918100e+04 | \n", + "3.918100e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
217 | \n", + "1000000.0 | \n", + "3714 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "5.0 | \n", + "1.077650e+05 | \n", + "1.117710e+05 | \n", + "1.077650e+05 | \n", + "1.077650e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
218 | \n", + "1000000.0 | \n", + "5279 | \n", + "5.0 | \n", + "850814.0 | \n", + "0 | \n", + "10.0 | \n", + "4.411120e+05 | \n", + "4.409760e+05 | \n", + "4.411120e+05 | \n", + "4.411120e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
219 | \n", + "500000.0 | \n", + "4030 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "NaN | \n", + "3.233950e+04 | \n", + "3.529950e+04 | \n", + "3.233950e+04 | \n", + "3.233950e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
220 | \n", + "500000.0 | \n", + "9035 | \n", + "NaN | \n", + "290775.0 | \n", + "0 | \n", + "1.0 | \n", + "2.203285e+05 | \n", + "2.202840e+05 | \n", + "2.203285e+05 | \n", + "2.203285e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "
221 | \n", + "500000.0 | \n", + "9102 | \n", + "NaN | \n", + "458032.0 | \n", + "0 | \n", + "10.0 | \n", + "5.495500e+04 | \n", + "5.502200e+04 | \n", + "5.495500e+04 | \n", + "5.495500e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
222 | \n", + "1000000.0 | \n", + "4431 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "NaN | \n", + "1.248270e+05 | \n", + "1.267550e+05 | \n", + "1.248270e+05 | \n", + "1.248270e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
223 | \n", + "300000.0 | \n", + "4062 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "5.0 | \n", + "1.847560e+05 | \n", + "1.874110e+05 | \n", + "1.847560e+05 | \n", + "1.847560e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
224 | \n", + "300000.0 | \n", + "2020 | \n", + "5.0 | \n", + "496000.0 | \n", + "0 | \n", + "5.0 | \n", + "8.160400e+04 | \n", + "7.916300e+04 | \n", + "8.160400e+04 | \n", + "8.160400e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
225 | \n", + "500000.0 | \n", + "1000 | \n", + "NaN | \n", + "293960.0 | \n", + "0 | \n", + "NaN | \n", + "3.969100e+04 | \n", + "3.969100e+04 | \n", + "3.969100e+04 | \n", + "3.969100e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
226 | \n", + "1000000.0 | \n", + "3053 | \n", + "5.0 | \n", + "NaN | \n", + "0 | \n", + "3.0 | \n", + "1.427360e+05 | \n", + "1.427310e+05 | \n", + "1.427360e+05 | \n", + "1.427360e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
227 | \n", + "300000.0 | \n", + "5104 | \n", + "11.0 | \n", + "NaN | \n", + "0 | \n", + "4.0 | \n", + "5.825630e+05 | \n", + "5.905210e+05 | \n", + "5.825630e+05 | \n", + "5.825630e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "1 | \n", + "0 | \n", + "
228 | \n", + "1000000.0 | \n", + "5762 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "3.0 | \n", + "1.829410e+05 | \n", + "1.827940e+05 | \n", + "1.829410e+05 | \n", + "1.829410e+05 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
229 | \n", + "NaN | \n", + "8874 | \n", + "NaN | \n", + "NaN | \n", + "0 | \n", + "NaN | \n", + "4.799900e+04 | \n", + "4.799900e+04 | \n", + "4.799900e+04 | \n", + "4.799900e+04 | \n", + "... | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "1 | \n", + "0 | \n", + "
230 rows × 243 columns
\n", + "