This repository has been archived by the owner on Nov 14, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathutils.py
147 lines (117 loc) · 4.45 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import keras as kr
import numpy as np
from keras import backend as ktf
from pushbullet import Pushbullet
def get_random_eraser(p=0.5, s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3, v_l=0, v_h=255):
def eraser(input_img):
img_h, img_w, _ = input_img.shape
p_1 = np.random.rand()
if p_1 > p:
return input_img
while True:
s = np.random.uniform(s_l, s_h) * img_h * img_w
r = np.random.uniform(r_1, r_2)
w = int(np.sqrt(s / r))
h = int(np.sqrt(s * r))
left = np.random.randint(0, img_w)
top = np.random.randint(0, img_h)
if left + w <= img_w and top + h <= img_h:
break
c = np.random.uniform(v_l, v_h)
input_img[top:top + h, left:left + w, :] = c
return input_img
return eraser
def mel_0_1(x):
min_val = -90.5
max_val = 39.21
return (x - min_val) / (max_val - min_val)
def uni_len(x, reqlen):
x_len = x.shape[1]
if reqlen < x_len:
max_offset = x_len - reqlen
offset = np.random.randint(max_offset)
x = x[:, offset:(reqlen+offset)]
return x
elif reqlen == x_len:
return x
else:
total_diff = reqlen - x_len
offset = np.random.randint(total_diff)
left_pad = offset
right_pad = total_diff - offset
return np.pad(x, (
(0, 0), (left_pad, right_pad)
), 'symmetric')
class CyclicLR(kr.callbacks.Callback):
def __init__(self, base_lr=0.001, max_lr=0.006, step_size=2000., mode='triangular',
gamma=1., scale_fn=None, scale_mode='cycle'):
super(CyclicLR, self).__init__()
self.base_lr = base_lr
self.max_lr = max_lr
self.step_size = step_size
self.mode = mode
self.gamma = gamma
if scale_fn is None:
if self.mode == 'triangular':
self.scale_fn = lambda x: 1.
self.scale_mode = 'cycle'
elif self.mode == 'triangular2':
self.scale_fn = lambda x: 1/(2.**(x-1))
self.scale_mode = 'cycle'
elif self.mode == 'exp_range':
self.scale_fn = lambda x: gamma**(x)
self.scale_mode = 'iterations'
else:
self.scale_fn = scale_fn
self.scale_mode = scale_mode
self.clr_iterations = 0.
self.trn_iterations = 0.
self.history = {}
self._reset()
def _reset(self, new_base_lr=None, new_max_lr=None,
new_step_size=None):
"""Resets cycle iterations.
Optional boundary/step size adjustment.
"""
if new_base_lr is not None:
self.base_lr = new_base_lr
if new_max_lr is not None:
self.max_lr = new_max_lr
if new_step_size is not None:
self.step_size = new_step_size
self.clr_iterations = 0.
def clr(self):
cycle = np.floor(1+self.clr_iterations/(2*self.step_size))
x = np.abs(self.clr_iterations/self.step_size - 2*cycle + 1)
if self.scale_mode == 'cycle':
return self.base_lr + (self.max_lr-self.base_lr)*np.maximum(0, (1-x))*self.scale_fn(cycle)
else:
return self.base_lr + (self.max_lr-self.base_lr)*np.maximum(0, (1-x))*self.scale_fn(self.clr_iterations)
def on_train_begin(self, logs={}):
logs = logs or {}
if self.clr_iterations == 0:
ktf.set_value(self.model.optimizer.lr, self.base_lr)
else:
ktf.set_value(self.model.optimizer.lr, self.clr())
def on_batch_end(self, epoch, logs=None):
logs = logs or {}
self.trn_iterations += 1
self.clr_iterations += 1
ktf.set_value(self.model.optimizer.lr, self.clr())
self.history.setdefault('lr', []).append(ktf.get_value(self.model.optimizer.lr))
self.history.setdefault('iterations', []).append(self.trn_iterations)
for k, v in logs.items():
self.history.setdefault(k, []).append(v)
def pushbullet_callback(this_fold):
print('Pushbullet api key found!')
pb = Pushbullet(os.environ['PB_API_KEY'])
def pb_func(epoch, logs):
pb.push_note(
"fold: " + str(this_fold) + " epoch: " + str(epoch),
"val_loss: " +
str(logs['val_loss']) +
" val_acc: " +
str(logs['val_acc']))
return kr.callbacks.LambdaCallback(
on_epoch_end=lambda epoch, logs: pb_func(epoch, logs))