-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig_ba_degree_inverse_ineq.py
executable file
·24 lines (21 loc) · 1.74 KB
/
config_ba_degree_inverse_ineq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import rl.graph_edit_rl as grl
import rl.graph_includes as graph_inc
import numpy.random as npr
import numpy as np
from config_global import *
config["ba-k"] = 3
config["ba-p"] = 0.1
config["immunized nodes"] = {"lambda:degree": {"ascending":True, "fn": graph_inc.degree_scaled, "fn params":{}, "count": 3}} #immunized node selection (e.g. 5 random)
config["graph fn"] = graph_inc.get_graph #graph generator function
config["graph params"] = {"model": "ba", "im": config["immunized nodes"],
"params": {"N":config["N"], "k":config["ba-k"], "p":config["ba-p"],
"fn_edges":[graph_inc.weight_inv_degree, graph_inc.weight_degree]}} #graph generator params, takes function family and immunization params
# Barabasi Albert preferential attachment graph
# x,y are node degrees of incident nodes, red weights wrt x*y, black wrt 1/(x*y)
config["states fn"] = "init_node_states" #initial state creation-untrained
config["states params"] = {} #idk we might need params
config["graph edit fn"] = "get_graph_edit_model" # graph edit model
config["graph edit params"] = {}
#params for this function
config["state train fn"] = "init_states_basic" #training the initial states
config["state train params"] = {}