-
Notifications
You must be signed in to change notification settings - Fork 307
/
benchmark_forecast.py
532 lines (457 loc) · 21 KB
/
benchmark_forecast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#
# Copyright (c) 2022 salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
#
import argparse
from collections import OrderedDict
import glob
import json
import logging
import math
import os
import re
import sys
import git
from typing import Dict, List
import numpy as np
import pandas as pd
import tqdm
from merlion.evaluate.forecast import ForecastEvaluator, ForecastMetric, ForecastEvaluatorConfig
from merlion.models.ensemble.combine import CombinerBase, Mean, ModelSelector, MetricWeightedMean
from merlion.models.ensemble.forecast import ForecasterEnsembleConfig, ForecasterEnsemble
from merlion.models.factory import ModelFactory
from merlion.models.forecast.base import ForecasterBase
from merlion.transform.resample import TemporalResample, granularity_str_to_seconds
from merlion.utils import TimeSeries, UnivariateTimeSeries
from merlion.utils.resample import infer_granularity, to_pd_datetime
from ts_datasets.base import BaseDataset
from ts_datasets.forecast import *
import matplotlib.pyplot as plt
logger = logging.getLogger(__name__)
MERLION_ROOT = os.path.dirname(os.path.abspath(__file__))
CONFIG_JSON = os.path.join(MERLION_ROOT, "conf", "benchmark_forecast.json")
DATADIR = os.path.join(MERLION_ROOT, "data")
OUTPUTDIR = os.path.join(MERLION_ROOT, "results", "forecast")
def parse_args():
with open(CONFIG_JSON, "r") as f:
valid_models = list(json.load(f).keys())
parser = argparse.ArgumentParser(
description="Script to benchmark various Merlion forecasting models on "
"univariate forecasting task. This file assumes that "
"you have pip installed both merlion (this repo's main "
"package) and ts_datasets (a sub-repo)."
)
parser.add_argument(
"--dataset",
default="M4_Hourly",
help="Name of dataset to run benchmark on. See get_dataset() "
"in ts_datasets/ts_datasets/forecast/__init__.py for "
"valid options.",
)
parser.add_argument("--data_root", default=None, help="Root directory/file of dataset.")
parser.add_argument("--data_kwargs", default="{}", help="JSON of keyword arguments for the data loader.")
parser.add_argument(
"--models",
type=str,
nargs="*",
default=None,
help="Name of forecasting model to benchmark.",
choices=valid_models,
)
parser.add_argument(
"--hash",
type=str,
default=None,
help="Unique identifier for the output file. Can be useful "
"if doing multiple runs with the same model but different "
"hyperparameters.",
)
parser.add_argument(
"--ensemble_type",
type=str,
default="selector",
help="How to combine multiple models in an ensemble",
choices=["mean", "err_weighted_mean", "selector"],
)
parser.add_argument(
"--retrain_type",
type=str,
default="without_retrain",
help="Name of retrain type, should be one of the three "
"types, without_retrain, sliding_window_retrain"
"or expanding_window_retrain.",
choices=["without_retrain", "sliding_window_retrain", "expanding_window_retrain"],
)
parser.add_argument("--n_retrain", type=int, default=0, help="Specify the number of retrain times.")
parser.add_argument(
"--load_checkpoint",
action="store_true",
default=False,
help="Specify this option if you would like continue "
"training your model on a dataset from a "
"checkpoint, instead of restarting from scratch.",
)
parser.add_argument("--debug", action="store_true", default=False, help="Whether to set logging level to debug.")
parser.add_argument(
"--visualize",
action="store_true",
default=False,
help="Whether to plot the model's predictions after "
"training on each example. Mutually exclusive "
"with running any sort of evaluation.",
)
parser.add_argument(
"--summarize",
action="store_true",
default=False,
help="Specify this option if you want to summarize "
"all results for a particular dataset. Note "
"that this option only summarizes the results "
"that have already been computed! It does not "
"run any algorithms, aside from the one(s) given "
"to --models (if any).",
)
args = parser.parse_args()
args.data_kwargs = json.loads(args.data_kwargs)
assert isinstance(args.data_kwargs, dict)
# If not summarizing all results, we need at least one model to evaluate
if args.summarize and args.models is None:
args.models = []
elif not args.summarize:
if args.models is None:
args.models = ["ARIMA"]
elif len(args.models) == 0:
parser.error("At least one model required if --summarize not given")
return args
def get_dataset_name(dataset: BaseDataset) -> str:
name = type(dataset).__name__
if hasattr(dataset, "subset") and dataset.subset is not None:
name += "_" + dataset.subset
if isinstance(dataset, CustomDataset):
root = dataset.rootdir
name = os.path.join(name, os.path.basename(os.path.dirname(root) if os.path.isfile(root) else root))
return name
def resolve_model_name(model_name: str):
with open(CONFIG_JSON, "r") as f:
config_dict = json.load(f)
if model_name not in config_dict:
raise NotImplementedError(
f"Benchmarking not implemented for model {model_name}. Valid model names are {list(config_dict.keys())}"
)
while "alias" in config_dict[model_name]:
model_name = config_dict[model_name]["alias"]
return model_name
def get_model(model_name: str, dataset: BaseDataset, **kwargs) -> ForecasterBase:
"""Gets the model, configured for the specified dataset."""
with open(CONFIG_JSON, "r") as f:
config_dict = json.load(f)
if model_name not in config_dict:
raise NotImplementedError(
f"Benchmarking not implemented for model {model_name}. Valid model names are {list(config_dict.keys())}"
)
while "alias" in config_dict[model_name]:
model_name = config_dict[model_name]["alias"]
# Load the model with default kwargs, but override with dataset-specific
# kwargs where relevant, as well as manual kwargs
model_configs = config_dict[model_name]["config"]
model_type = config_dict[model_name].get("model_type", model_name)
model_kwargs = model_configs["default"]
model_kwargs.update(model_configs.get(type(dataset).__name__, {}))
model_kwargs.update(kwargs)
# Override the transform with Identity
if "transform" in model_kwargs:
logger.warning(
f"Data pre-processing transforms currently not "
f"supported for forecasting. Ignoring "
f"transform {model_kwargs['transform']} and "
f"using Identity instead."
)
model_kwargs["transform"] = TemporalResample(
granularity=None, aggregation_policy="Mean", missing_value_policy="FFill"
)
return ModelFactory.create(name=model_type, **model_kwargs)
def get_combiner(ensemble_type: str) -> CombinerBase:
if ensemble_type == "mean":
return Mean(abs_score=False)
elif ensemble_type == "selector":
return ModelSelector(metric=ForecastMetric.sMAPE)
elif ensemble_type == "err_weighted_mean":
return MetricWeightedMean(metric=ForecastMetric.sMAPE)
else:
raise KeyError(f"ensemble_type {ensemble_type} not supported.")
def get_dirname(model_names: List[str], ensemble_type: str) -> str:
dirname = "+".join(sorted(model_names))
if len(model_names) > 1:
dirname += "_" + ensemble_type
return dirname
def train_model(
model_names: List[str],
dataset: BaseDataset,
ensemble_type: str,
csv: str,
config_fname: str,
retrain_type: str = "without_retrain",
n_retrain: int = 10,
load_checkpoint: bool = False,
visualize: bool = False,
):
"""
Trains all the model on the dataset, and evaluates its predictions for every
horizon setting on every time series.
"""
model_names = [resolve_model_name(m) for m in model_names]
dirname = get_dirname(model_names, ensemble_type)
dirname = dirname + "_" + retrain_type + str(n_retrain)
results_dir = os.path.join(MERLION_ROOT, "results", "forecast", dirname)
os.makedirs(results_dir, exist_ok=True)
dataset_name = get_dataset_name(dataset)
# Determine where to start within the dataset if there is a checkpoint
if os.path.isfile(csv) and load_checkpoint:
i0 = pd.read_csv(csv).idx.max()
else:
i0 = -1
os.makedirs(os.path.dirname(csv), exist_ok=True)
with open(csv, "w") as f:
f.write("idx,name,horizon,retrain_type,n_retrain,RMSE,sMAPE\n")
model = None
# loop over dataset
is_multivariate_data = dataset[0][0].shape[1] > 1
for i, (df, md) in enumerate(tqdm.tqdm(dataset, desc=f"{dataset_name} Dataset")):
if i <= i0:
continue
trainval = md["trainval"]
# Resample to an appropriate granularity according to metadata
if "granularity" in md:
dt = md["granularity"]
df = df.resample(dt, closed="right", label="right").mean().interpolate()
vals = TimeSeries.from_pd(df)
dt = infer_granularity(vals.time_stamps)
# Get the train/val split
t = trainval.index[np.argmax(~trainval)].value // 1e9
train_vals, test_vals = vals.bisect(t, t_in_left=False)
# Compute train_window_len and test_window_len
train_start_timestamp = train_vals.univariates[train_vals.names[0]].time_stamps[0]
test_start_timestamp = test_vals.univariates[test_vals.names[0]].time_stamps[0]
train_window_len = test_start_timestamp - train_start_timestamp
train_end_timestamp = train_vals.univariates[train_vals.names[0]].time_stamps[-1]
test_end_timestamp = test_vals.univariates[test_vals.names[0]].time_stamps[-1]
test_window_len = test_end_timestamp - train_end_timestamp
# Get all the horizon conditions we want to evaluate from metadata
if any("condition" in k and isinstance(v, list) for k, v in md.items()):
conditions = sum([v for k, v in md.items() if "condition" in k and isinstance(v, list)], [])
logger.debug("\n" + "=" * 80 + "\n" + df.columns[0] + "\n" + "=" * 80 + "\n")
horizons = set()
for condition in conditions:
horizons.update([v for k, v in condition.items() if "horizon" in k])
# For multivariate data, we use a horizon of 3
elif is_multivariate_data:
horizons = [3 * dt]
# For univariate data, we predict the entire test data in batch
else:
horizons = [test_window_len]
# loop over horizon conditions
for horizon in horizons:
horizon = granularity_str_to_seconds(horizon)
try:
max_forecast_steps = int(math.ceil(horizon / dt.total_seconds()))
except:
window = TimeSeries.from_pd(test_vals.to_pd()[: to_pd_datetime(train_end_timestamp + horizon)])
max_forecast_steps = len(TemporalResample(granularity=dt)(window))
logger.debug(f"horizon is {pd.Timedelta(seconds=horizon)} and max_forecast_steps is {max_forecast_steps}")
if retrain_type == "without_retrain":
retrain_freq = None
train_window = None
n_retrain = 0
elif retrain_type == "sliding_window_retrain":
retrain_freq = math.ceil(test_window_len / int(n_retrain))
train_window = train_window_len
horizon = min(retrain_freq, horizon)
elif retrain_type == "expanding_window_retrain":
retrain_freq = math.ceil(test_window_len / int(n_retrain))
train_window = None
horizon = min(retrain_freq, horizon)
else:
raise ValueError(
"the retrain_type should be without_retrain, sliding_window_retrain or expanding_window_retrain"
)
# Get Model
models = [get_model(m, dataset, max_forecast_steps=max_forecast_steps) for m in model_names]
if len(models) == 1:
model = models[0]
else:
config = ForecasterEnsembleConfig(combiner=get_combiner(ensemble_type))
model = ForecasterEnsemble(config=config, models=models)
evaluator = ForecastEvaluator(
model=model,
config=ForecastEvaluatorConfig(train_window=train_window, horizon=horizon, retrain_freq=retrain_freq),
)
# Get Evaluate Results
train_result, test_pred = evaluator.get_predict(train_vals=train_vals, test_vals=test_vals)
rmses = evaluator.evaluate(ground_truth=test_vals, predict=test_pred, metric=ForecastMetric.RMSE)
smapes = evaluator.evaluate(ground_truth=test_vals, predict=test_pred, metric=ForecastMetric.sMAPE)
# Log relevant info to the CSV
with open(csv, "a") as f:
f.write(f"{i},{df.columns[0]},{horizon},{retrain_type},{n_retrain},{rmses},{smapes}\n")
# generate comparison plot
if visualize:
name = train_vals.names[0]
train_time_stamps = train_vals.univariates[name].time_stamps
fig_dir = os.path.join(results_dir, dataset_name + "_figs")
os.makedirs(fig_dir, exist_ok=True)
fig_dataset_dir = os.path.join(fig_dir, df.columns[0])
os.makedirs(fig_dataset_dir, exist_ok=True)
if train_result[0] is not None:
train_pred = train_result[0]
else:
train_pred = TimeSeries({name: UnivariateTimeSeries(train_time_stamps, None)})
fig_name = dirname + "_" + retrain_type + str(n_retrain) + "_" + "horizon" + str(int(horizon)) + ".png"
plot_unrolled_compare(
train_vals,
test_vals,
train_pred,
test_pred,
os.path.join(fig_dataset_dir, fig_name),
dirname + f"(sMAPE={smapes:.4f})",
)
# Log relevant info to the logger
logger.debug(f"{dirname} {retrain_type} {n_retrain} sMAPE : {smapes:.4f}\n")
# Save full experimental config
if model is not None:
full_config = dict(
model_config=model.config.to_dict(),
evaluator_config=evaluator.config.to_dict(),
code_version_info=get_code_version_info(),
)
with open(config_fname, "w") as f:
json.dump(full_config, f, indent=2, sort_keys=True)
def get_code_version_info():
return dict(time=str(pd.Timestamp.now()), commit=git.Repo(search_parent_directories=True).head.object.hexsha)
def plot_unrolled_compare(train_vals, test_vals, train_pred, test_pred, outputpath, title):
truth_pd = (train_vals + test_vals).to_pd()
truth_pd.columns = ["ground_truth"]
pred_pd = (train_pred + test_pred).to_pd()
pred_pd.columns = ["prediction"]
result_pd = pd.concat([truth_pd, pred_pd], axis=1)
plt.figure()
plt.rcParams["savefig.dpi"] = 500
plt.rcParams["figure.dpi"] = 500
result_pd.plot(linewidth=0.5)
plt.axvline(train_vals.to_pd().index[-1], color="r")
plt.title(title)
plt.savefig(outputpath)
plt.clf()
def join_dfs(name2df: Dict[str, pd.DataFrame]) -> pd.DataFrame:
"""
Joins multiple results dataframes into a single dataframe describing the
results from all models.
"""
full_df, lsuffix = None, ""
shared_cols = ["idx", "name", "horizon", "retrain_type", "n_retrain"]
for name, df in name2df.items():
df.columns = [c if c in shared_cols else f"{c}_{name}" for c in df.columns]
if full_df is None:
full_df = df
else:
full_df = full_df.merge(df, how="outer", left_on=shared_cols, right_on=shared_cols)
unique_cols = [c for c in full_df.columns if c not in shared_cols]
return full_df[shared_cols + unique_cols]
def summarize_full_df(full_df: pd.DataFrame) -> pd.DataFrame:
# Get the names of all algorithms which have full results
algs = [col[len("sMAPE") :] for col in full_df.columns if col.startswith("sMAPE") and not full_df[col].isna().any()]
summary_df = pd.DataFrame({alg.lstrip("_"): [] for alg in algs})
# Compute pooled (per time series) mean/median sMAPE, RMSE
mean_smape, med_smape, mean_rmse, med_rmse = [[] for _ in range(4)]
for ts_name in np.unique(full_df.name):
ts = full_df[full_df.name == ts_name]
# append smape
smapes = ts[[f"sMAPE{alg}" for alg in algs]]
mean_smape.append(smapes.mean(axis=0).values)
med_smape.append(smapes.median(axis=0).values)
# append rmse
rmses = ts[[f"RMSE{alg}" for alg in algs]]
mean_rmse.append(rmses.mean(axis=0).values)
med_rmse.append(rmses.median(axis=0).values)
# Add mean/median loglifts to the summary dataframe
summary_df.loc["mean_sMAPE"] = np.mean(mean_smape, axis=0)
summary_df.loc["median_sMAPE"] = np.median(med_smape, axis=0)
summary_df.loc["mean_RMSE"] = np.mean(mean_rmse, axis=0)
summary_df.loc["median_RMSE"] = np.median(med_rmse, axis=0)
return summary_df
def main():
args = parse_args()
logging.basicConfig(
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
stream=sys.stdout,
level=logging.DEBUG if args.debug else logging.INFO,
)
dataset = get_dataset(args.dataset, rootdir=args.data_root, **args.data_kwargs)
dataset_name = get_dataset_name(dataset)
if len(args.models) > 0:
# Determine the name of the results CSV
model_names = [resolve_model_name(m) for m in args.models]
dirname = get_dirname(model_names, args.ensemble_type)
dirname = dirname + "_" + args.retrain_type + str(args.n_retrain)
results_dir = os.path.join(MERLION_ROOT, "results", "forecast", dirname)
basename = dataset_name
if args.hash is not None:
basename += "_" + args.hash
config_fname = f"{dataset_name}_config"
csv = os.path.join(results_dir, f"{basename}.csv")
config_fname = os.path.join(results_dir, f"{config_fname}.json")
train_model(
model_names=args.models,
dataset=dataset,
ensemble_type=args.ensemble_type,
retrain_type=args.retrain_type,
n_retrain=args.n_retrain,
csv=csv,
config_fname=config_fname,
load_checkpoint=args.load_checkpoint,
visualize=args.visualize,
)
# Pool the mean/medium sMAPE, RMSE for all evaluation
# settings for each time series, and report summary
# pooled statistics.
df = pd.read_csv(csv)
summary = summarize_full_df(df)
summary.to_csv(os.path.join(results_dir, f"{basename}_summary.csv"), index=True)
summary = summary[summary.columns[0]]
logger.info(f"Pooled mean sMAPE: {summary['mean_sMAPE']:.4f}")
logger.info(f"Pooled median sMAPE: {summary['median_sMAPE']:.4f}")
logger.info(f"Pooled mean RMSE: {summary['mean_RMSE']:.4f}")
logger.info(f"Pooled median RMSE: {summary['median_RMSE']:.4f}")
# Now we summarize all results. Get all the individual CSV's as dataframes
name2df = OrderedDict()
prefix = f"{MERLION_ROOT}/results/forecast/*/{dataset_name}"
csvs = glob.glob(f"{prefix}.csv") + glob.glob(f"{prefix}_*.csv")
csvs = [c for c in csvs if not c.endswith(f"_summary.csv")]
if len(csvs) == 0:
raise RuntimeError(
f"Did not find any pre-computed results files "
f"for dataset {dataset_name}. Please run this "
f"script on the dataset with specific algorithms "
f"before trying to summarize their results."
)
for csv in sorted(csvs):
basename = re.search(f"{dataset_name}.*\\.csv", csv).group(0)
model_name = os.path.basename(os.path.dirname(csv[: -len(basename)]))
suffix = re.search(f"(?<={dataset_name}).*(?=\\.csv)", basename).group(0)
try:
name2df[model_name + suffix] = pd.read_csv(csv)
except Exception as e:
logger.warning(f'Caught {type(e).__name__}: "{e}". Skipping csv file {csv}.')
continue
# Join all the dataframes into one & summarize the results
dirname = os.path.join(MERLION_ROOT, "results", "forecast")
full_df = join_dfs(name2df)
summary_df = summarize_full_df(full_df)
if args.summarize:
print(summary_df)
full_fname, summary_fname = [os.path.join(dirname, f"{dataset_name}_{x}.csv") for x in ["full", "summary"]]
os.makedirs(os.path.dirname(full_fname), exist_ok=True)
full_df.to_csv(full_fname, index=False)
summary_df.to_csv(summary_fname, index=True)
if __name__ == "__main__":
main()