-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathattack.py
182 lines (146 loc) · 6.85 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import numpy as np
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class PGDAttacker():
def __init__(self, radius, steps, step_size, random_start, norm_type, ascending=True):
self.radius = radius # attack radius
self.steps = steps # how many step to conduct pgd
self.step_size = step_size # coefficient of PGD
self.random_start = random_start
self.norm_type = norm_type # which norm of your noise
self.ascending = ascending # perform gradient ascending, i.e, to maximum the loss
def output(self, x, model, tokens_lens, text_token):
x = x + model.positional_embedding.type(model.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x, weight = model.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = model.ln_final(x).type(model.dtype)
x = x[torch.arange(x.shape[0]), text_token.argmax(dim=-1)] @ model.text_projection
attention_weights_all = []
for i in range(len(tokens_lens)):
attention_weights = weight[-1][i][min(76, tokens_lens[i])][:1+min(75, max(tokens_lens))][1:][:-1]
attention_weights_all.append(attention_weights)
attention_weights = torch.stack(attention_weights_all, dim=0)
return x, attention_weights
def perturb(self, device, m_tokens_len, bs, criterion, x, y,a_indices,encoder, tokens_lens=None, model=None, text_token=None):
if self.steps==0 or self.radius==0:
return x.clone()
adv_x = x.clone()
if self.random_start:
if self.norm_type == 'l-infty':
adv_x += 2 * (torch.rand_like(x) - 0.5) * self.radius
else:
adv_x += 2 * (torch.rand_like(x) - 0.5) * self.radius / self.steps
self._clip_(adv_x, x)
''' temporarily shutdown autograd of model to improve pgd efficiency '''
# adv_x, attention_weights = self.output(adv_x, model, tokens_lens, text_token)
# model.eval()
encoder.eval()
for pp in encoder.parameters():
pp.requires_grad = False
for step in range(self.steps):
adv_x_o = adv_x.clone()
adv_x.requires_grad_()
_y = encoder(a_indices,adv_x)
loss = criterion(y.to(device), _y, m_tokens_len, bs)
grad = torch.autograd.grad(loss, [adv_x])[0]
with torch.no_grad():
if not self.ascending: grad.mul_(-1)
if self.norm_type == 'l-infty':
adv_x.add_(torch.sign(grad), alpha=self.step_size)
else:
if self.norm_type == 'l2':
grad_norm = (grad.reshape(grad.shape[0],-1)**2).sum(dim=1).sqrt()
elif self.norm_type == 'l1':
grad_norm = grad.reshape(grad.shape[0],-1).abs().sum(dim=1)
grad_norm = grad_norm.reshape( -1, *( [1] * (len(x.shape)-1) ) )
scaled_grad = grad / (grad_norm + 1e-10)
adv_x.add_(scaled_grad, alpha=self.step_size)
self._clip_(adv_x, adv_x_o)
''' reopen autograd of model after pgd '''
# decoder.trian()
for pp in encoder.parameters():
pp.requires_grad = True
return adv_x # , attention_weights
def perturb_random(self, criterion, x, data, decoder,y,target_model,encoder=None):
if self.steps==0 or self.radius==0:
return x.clone()
adv_x = x.clone()
if self.norm_type == 'l-infty':
adv_x += 2 * (torch.rand_like(x) - 0.5) * self.radius
else:
adv_x += 2 * (torch.rand_like(x) - 0.5) * self.radius / self.steps
self._clip_(adv_x, x)
return adv_x.data
def perturb_iat(self, criterion, x, data, decoder,y,target_model,encoder=None):
if self.steps==0 or self.radius==0:
return x.clone()
B = x.shape[0]
L = x.shape[1]
H = x.shape[2]
nb_num = 8
alpha = torch.rand(B,L,nb_num,1).to(device)
A_1 = x.unsqueeze(2).expand(B,L,nb_num,H)
A_2 = x.unsqueeze(1).expand(B,L,L,H)
rand_idx = []
for i in range(L):
rand_idx.append(np.random.choice(L,nb_num,replace=False))
rand_idx = np.array(rand_idx)
rand_idx = torch.tensor(rand_idx).long().reshape(1,L,1,nb_num).expand(B,L,H,nb_num).to(device)
# A_2 = A_2[:,np.arange(0,L), rand_idx,:]
A_2 = torch.gather(A_2.reshape(B,L,H,L),-1,rand_idx).reshape(B,L,nb_num, H)
A_e = A_1 - A_2
# A_e
# adv_x = (A_e * alpha).sum(dim=-1) + x.clone()
adv_x = x.clone()
if self.random_start:
if self.norm_type == 'l-infty':
adv_x += 2 * (torch.rand_like(x) - 0.5) * self.radius
else:
adv_x += 2 * (torch.rand_like(x) - 0.5) * self.radius / self.steps
self._clip_(adv_x, x)
# assert adv_x.shape[0] == 8
''' temporarily shutdown autograd of model to improve pgd efficiency '''
# model.eval()
decoder.eval()
for pp in decoder.parameters():
pp.requires_grad = False
adv_x = x.clone()
alpha.requires_grad_()
for step in range(self.steps):
alpha.requires_grad_()
dot_Ae_alpha = (A_e * alpha).sum(dim=-2)
# print("dot_Ae_alpha:", dot_Ae_alpha.shape)
adv_x.add_(torch.sign(dot_Ae_alpha), alpha=self.step_size)
self._clip_(adv_x, x)
if encoder is None:
adv_x_input = adv_x.squeeze(-1)
else:
adv_x_input = adv_x
_y = target_model(adv_x_input, data,decoder,encoder)
loss = criterion(y.to(device), _y)
grad = torch.autograd.grad(loss, [alpha],retain_graph=True)[0]
# with torch.no_grad():
with torch.no_grad():
if not self.ascending: grad.mul_(-1)
assert self.norm_type == 'l-infty'
alpha = alpha.detach()+ grad * 0.01
''' reopen autograd of model after pgd '''
# decoder.trian()
for pp in decoder.parameters():
pp.requires_grad = True
return adv_x.data
def _clip_(self, adv_x, x):
adv_x -= x
if self.norm_type == 'l-infty':
adv_x.clamp_(-self.radius, self.radius)
else:
if self.norm_type == 'l2':
norm = (adv_x.reshape(adv_x.shape[0],-1)**2).sum(dim=1).sqrt()
elif self.norm_type == 'l1':
norm = adv_x.reshape(adv_x.shape[0],-1).abs().sum(dim=1)
norm = norm.reshape( -1, *( [1] * (len(x.shape)-1) ) )
adv_x /= (norm + 1e-10)
adv_x *= norm.clamp(max=self.radius)
adv_x += x
adv_x.clamp_(0, 1)