-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
357 lines (291 loc) · 14.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import os
import torch
import numpy as np
import time
from torch.utils.tensorboard import SummaryWriter
from os.path import join as pjoin
from torch.distributions import Categorical
import json
# import clip
from CLIP.clip import clip
from CLIP.clip import model
from attack import PGDAttacker
import options.option_transformer as option_trans
import models.vqvae as vqvae
import utils.utils_model as utils_model
import eval_trans_per as eval_trans
from dataset import dataset_TM_train
from dataset import dataset_TM_eval
from dataset import dataset_tokenize
from metrics import batch_tvd,topk_overlap_loss,topK_overlap_true_loss
import models.t2m_trans as trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
from utils.word_vectorizer import WordVectorizer
from utils.losses import loss_robust
import wandb
import random
import time
warnings.filterwarnings('ignore')
##### ---- Exp dirs ---- #####
args = option_trans.get_args_parser()
torch.manual_seed(args.seed)
device = 'cuda'
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
args.vq_dir= os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}')
os.makedirs(args.out_dir, exist_ok = True)
os.makedirs(args.vq_dir, exist_ok = True)
##wandb init
# if args.wandb==True:
# wandb.init(config=args,
# project='T2M_adv-4090', group='_xhr0313', name='clip_train add loss attention adv-0.1')
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
##### ---- preperation ---- #####
def target_model(embedd,encoder):
logits = encoder(embedd)
return torch.sigmoid(logits)
def target_model_sta(embedd, data, decoder,encoder):
encoder(data,revise_embedding=embedd)
decoder(data=data)
return data.attn
# def crit(gt, pred):
# return batch_tvd(gt,pred)
def crit(gt, pred, m_tokens_len, bs):
loss_cls=0.0
for i in range(bs):
# loss function (26), (26, 513)
loss_cls += loss_ce(pred[i][:m_tokens_len[i] + 1], gt[i][:m_tokens_len[i] + 1])/ bs
return loss_cls
def crit_sta(gt, pred):
return topk_overlap_loss(gt, pred,K=args.K).mean()
##### ---- Dataloader ---- #####
train_loader_token = dataset_tokenize.DATALoader(args.dataname, 1, unit_length=2**args.down_t)
w_vectorizer = WordVectorizer('./glove', 'our_vab')
val_loader = dataset_TM_eval.DATALoader(args.dataname, False, 32, w_vectorizer)
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Network ---- #####
# clip_model, clip_preprocess = clip.load("/root/autodl-tmp/t2m/T2M-GPT-main/clip_weights/best_model_jsd_tvd.pt", device=torch.device('cuda'), jit=False) # Must set jit=False for training
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False) # Must set jit=False for training
clip_model_teacher, preprocess_teacher = clip.load("ViT-B/32", device=device, jit=False) # Must set jit=False for training
clip_model_teacher.eval()
for p in clip_model_teacher.parameters():
p.requires_grad = False
# clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.train()
# for p in clip_model.parameters():
# p.requires_grad = False
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
trans_encoder_origin = trans.Text2Motion_Transformer(num_vq=args.nb_code,
embed_dim=args.embed_dim_gpt,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=args.num_layers,
n_head=args.n_head_gpt,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
trans_encoder_pertubation =trans.Text2Motion_Transformer(num_vq=args.nb_code,
embed_dim=args.embed_dim_gpt,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=args.num_layers,
n_head=args.n_head_gpt,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
print ('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
net.cuda()
if args.resume_trans is not None:
print ('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
trans_encoder_origin.load_state_dict(ckpt['trans'], strict=True)
trans_encoder_origin.eval()
trans_encoder_origin.cuda()
else:
trans_encoder_origin.eval()
trans_encoder_origin.cuda()
trans_encoder_pertubation.load_state_dict(ckpt['trans'], strict=True)
trans_encoder_pertubation.train()
trans_encoder_pertubation.cuda()
print('loading chechpoint successfully!')
##### ---- Optimizer & Scheduler ---- #####
# 获取 clip_model 的参数
clip_params = list(clip_model.parameters())
optimizer = utils_model.initial_optim(args.decay_option, args.lr, args.weight_decay, trans_encoder_pertubation, args.optimizer, eps=1e-3)
for param in clip_params:
optimizer.add_param_group({'params': param})
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
##### ---- Optimization goals ---- #####
loss_ce = torch.nn.CrossEntropyLoss()
loss_rob=torch.nn.L1Loss()
sim_loss=torch.nn.L1Loss()
nb_iter, avg_loss_cls, avg_acc = 0, 0., 0.
right_num = 0
nb_sample_train = 0
##### ---- get code ---- #####
for batch in train_loader_token:
pose, name = batch
bs, seq = pose.shape[0], pose.shape[1]
pose = pose.cuda().float() # bs, nb_joints, joints_dim, seq_len
target = net.encode(pose)
target = target.cpu().numpy()
np.save(pjoin(args.vq_dir, name[0] +'.npy'), target)
train_loader = dataset_TM_train.DATALoader(args.dataname, args.batch_size, args.nb_code, args.vq_name, unit_length=2**args.down_t)
train_loader_iter = dataset_TM_train.cycle(train_loader)
# best_fid, best_fid_per, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder_pertubation, logger, writer, 0, best_fid=1000, best_fid_perturbation=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, clip_model=clip_model, eval_wrapper=eval_wrapper)
best_fid=1000.0
best_fid_syn=1000.0
best_fid_per=1000.0
best_iter=0.0
best_div=100.0
best_top1=0.0
best_top2=0.0
best_top3=0.0
best_matching=100.0
# start_time = time.time()
def topK_process(model, text):
# Encode and normalize the search query using CLIP
text_token = clip.tokenize(text, truncate=True).cuda()
# tokens = text[5].split(' ')
tokens_lens = [1+len(txt.split(' ')) for txt in text]
text_encoded, weight = model.encode_text(text_token)
# text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
# attention_weights = weight[-1][0][1+len(tokens)][:2+len(tokens)][1:][:-1]
# attention_weights = weight[-1][range(len(weight[-1])), tokens_lens][:, :1+max(tokens_lens)][:, 1:][:, :-1]
attention_weights_all = []
for i in range(len(tokens_lens)):
attention_weights = weight[-1][i][min(76, tokens_lens[i])][:1+min(75, max(tokens_lens))][1:][:-1]
attention_weights_all.append(attention_weights)
attention_weights = torch.stack(attention_weights_all, dim=0)
return text_encoded.float(), attention_weights
def topK_PGD_process(model, text, PGD, encoder):
# Encode and normalize the search query using CLIP
text_token = clip.tokenize(text, truncate=True).cuda()
# tokens = text[5].split(' ')
tokens_lens = [1+len(txt.split(' ')) for txt in text]
x = model.token_embedding(text_token).type(model.dtype)
x, attention_weights = PGD.perturb(device, m_tokens_len, bs, criterion=crit, x=x,encoder=encoder, a_indices=a_indices,y=target, tokens_lens=tokens_lens, model=model, text_token=text_token)
return x.float(), attention_weights
while nb_iter <= args.total_iter:
# if nb_iter == 1000:
# print('time for 1000 iterations:', time.time()-start_time)
batch = next(train_loader_iter)
clip_text, clip_text_perb, m_tokens, m_tokens_len = batch # origin data raw text
m_tokens, m_tokens_len = m_tokens.cuda(), m_tokens_len.cuda()
bs = m_tokens.shape[0]
target = m_tokens # (bs, 26)
target = target.cuda()
# text = clip.tokenize(clip_text, truncate=True).cuda()
# text_perb = clip.tokenize(clip_text_perb, truncate=True).cuda()
# feat_clip_text = clip_model.encode_text(text)[0].float()#text_tokens
# new_embedd=clip_model.encode_text(text_perb)[0].float()
if random.choice([True, False]):
clip_text = clip_text # 无truncate
else:
clip_text = clip_text_perb
input_index = target[:,:-1]
# ---------------------------attention loss-----------------------------------------------
feat_clip_text, weight_ori = topK_process(clip_model, clip_text)
feat_clip_text_teacher, weight_ori_teacher = topK_process(clip_model_teacher, clip_text)
if args.pkeep == -1:
proba = np.random.rand(1)[0]
mask = torch.bernoulli(proba * torch.ones(input_index.shape,
device=input_index.device))
else:
mask = torch.bernoulli(args.pkeep * torch.ones(input_index.shape,
device=input_index.device))
mask = mask.round().to(dtype=torch.int64)
r_indices = torch.randint_like(input_index, args.nb_code)
a_indices = mask*input_index+(1-mask)*r_indices
# if args.method=='PGD':
# X_PGDer = PGDAttacker(
# radius=args.x_pgd_radius, steps=args.x_pgd_step, step_size=args.x_pgd_step_size, random_start= \
# True, norm_type=args.x_pgd_norm_type, ascending=True
# )
# # we will perturb e(x) to ensure robustness of models``
# new_embedd = X_PGDer.perturb(device, m_tokens_len, bs, criterion=crit, x=feat_clip_text,encoder=trans_encoder_pertubation, a_indices=a_indices,y=target)
# new_embedd, weight_perb = topK_PGD_process(clip_model, clip_text, X_PGDer, encoder=trans_encoder_pertubation)
# loss_attention = topk_overlap_loss(weight_ori, weight_perb).sum()
# else:
new_embedd, weight_perb = topK_process(clip_model, clip_text_perb)
loss_attention = topk_overlap_loss(weight_ori, weight_perb).sum()
cls_pred_sim_origin=trans_encoder_origin(a_indices,feat_clip_text_teacher)
cls_pred_origin=trans_encoder_pertubation(a_indices, feat_clip_text)
cls_pred_per = trans_encoder_pertubation(a_indices, new_embedd)
cls_pred_origin = cls_pred_origin.contiguous()
# cls_pred_sim_origin = cls_pred_sim_origin.contiguous()
cls_pred_per = cls_pred_per.contiguous()
sim_loss =0.0
adv_loss =0.0
loss_cls = 0.0
for i in range(bs):
# loss function (26), (26, 513)
loss_cls += loss_ce(cls_pred_per[i][:m_tokens_len[i] + 1], target[i][:m_tokens_len[i] + 1]) / bs
adv_loss += loss_rob(cls_pred_origin[i][:m_tokens_len[i] + 1], cls_pred_per[i][:m_tokens_len[i] + 1]) / bs
sim_loss+= loss_rob(cls_pred_origin[i][:m_tokens_len[i] + 1], cls_pred_sim_origin[i][:m_tokens_len[i] + 1]) / bs
# Accuracy
probs = torch.softmax(cls_pred_per[i][:m_tokens_len[i] + 1], dim=-1)
if args.if_maxtest:
_, cls_pred_index = torch.max(probs, dim=-1)
else:
dist = Categorical(probs)
cls_pred_index = dist.sample()
right_num += (cls_pred_index.flatten(0) == target[i][:m_tokens_len[i] + 1].flatten(0)).sum().item()
loss_total=loss_cls+sim_loss*0.1 + adv_loss*0.2 + loss_attention*0.05
# loss_total=loss_cls
## global loss
# if args.wandb==True:
# wandb.log({'loss_cls':loss_cls,'sim_loss':sim_loss,'adv_loss':adv_loss, 'attention': loss_attention})
optimizer.zero_grad()
loss_total.backward()
optimizer.step()
scheduler.step()
avg_loss_cls = avg_loss_cls + loss_total
nb_sample_train = nb_sample_train + (m_tokens_len + 1).sum().item()
nb_iter += 1
if nb_iter % args.print_iter == 0 :
avg_loss_cls = avg_loss_cls / args.print_iter
avg_acc = right_num * 100 / nb_sample_train
writer.add_scalar('./Loss/train', avg_loss_cls, nb_iter)
writer.add_scalar('./ACC/train', avg_acc, nb_iter)
msg = f"Train. Iter {nb_iter} : Loss. {avg_loss_cls:.5f}, ACC. {avg_acc:.4f}"
logger.info(msg)
# if args.wandb==True:
# wandb.log({'Loss':avg_loss_cls,'ACC':avg_acc})
avg_loss_cls = 0.
right_num = 0
nb_sample_train = 0
if nb_iter % args.eval_iter == 0:
# if nb_iter < 3000:
# continue
# clip_model.eval()
# try:
best_fid, best_fid_syn,best_fid_per,best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder_pertubation, logger, writer, nb_iter, best_fid,best_fid_syn,best_fid_per, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper)
# if args.wandb==True:
# wandb.log({'best_fid':best_fid,'best_fid_per':best_fid_per,'best_fid_syn':best_fid_syn,'best_iter':best_iter,'best_div':best_div,'best_top1':best_top1,'best_top2':best_top2,'best_top3':best_top3,'best_matching':best_matching})
# except:
# print(nb_iter)
# clip_model.train()
if nb_iter == args.total_iter:
try:
msg_final = f"Train. Iter {best_iter} : FID. {best_fid:.5f}, best_fid_syn. {best_fid_syn:.5f},FID_PER.{best_fid_per:.5f},Diversity. {best_div:.4f}, TOP1. {best_top1:.4f}, TOP2. {best_top2:.4f}, TOP3. {best_top3:.4f}"
logger.info(msg_final)
break
except:
print('total_iter can not eval')
break