From 41f96697e840ca273ccf5fb151a69775d365852d Mon Sep 17 00:00:00 2001 From: Valentin Laurent Date: Mon, 16 Dec 2024 18:43:02 +0100 Subject: [PATCH] FIX: type checking --- mapie/regression/quantile_regression.py | 25 +++++++++++++------------ 1 file changed, 13 insertions(+), 12 deletions(-) diff --git a/mapie/regression/quantile_regression.py b/mapie/regression/quantile_regression.py index 8c5ef3103..4b5c4564d 100644 --- a/mapie/regression/quantile_regression.py +++ b/mapie/regression/quantile_regression.py @@ -1,7 +1,7 @@ from __future__ import annotations import warnings -from typing import Iterable, Dict, List, Optional, Tuple, Union, cast +from typing import Iterable, List, Optional, Tuple, Union, cast, Any import numpy as np from sklearn.base import RegressorMixin, clone @@ -547,7 +547,7 @@ def fit( The model itself. """ - self.init_fit() + self.initialize_fit() if self.cv == "prefit": X_calib, y_calib = self.prefit_estimators(X, y) @@ -570,8 +570,7 @@ def fit( return self - def init_fit(self): - + def initialize_fit(self) -> None: self.cv = self._check_cv(cast(str, self.cv)) self.alpha_np = self._check_alpha(self.alpha) self.estimators_: List[RegressorMixin] = [] @@ -667,13 +666,15 @@ def fit_estimators( def conformalize( self, - X_conf: ArrayLike, - y_conf: ArrayLike, + X: ArrayLike, + y: ArrayLike, sample_weight: Optional[ArrayLike] = None, - predict_params: Dict = {}, - ): + # Parameter groups kept for compliance with superclass MapieRegressor + groups: Optional[ArrayLike] = None, + **kwargs: Any, + ) -> MapieRegressor: - self.n_calib_samples = _num_samples(y_conf) + self.n_calib_samples = _num_samples(y) y_calib_preds = np.full( shape=(3, self.n_calib_samples), @@ -681,15 +682,15 @@ def conformalize( ) for i, est in enumerate(self.estimators_): - y_calib_preds[i] = est.predict(X_conf, **predict_params).ravel() + y_calib_preds[i] = est.predict(X, **kwargs).ravel() self.conformity_scores_ = np.full( shape=(3, self.n_calib_samples), fill_value=np.nan ) - self.conformity_scores_[0] = y_calib_preds[0] - y_conf - self.conformity_scores_[1] = y_conf - y_calib_preds[1] + self.conformity_scores_[0] = y_calib_preds[0] - y + self.conformity_scores_[1] = y - y_calib_preds[1] self.conformity_scores_[2] = np.max( [ self.conformity_scores_[0],