-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_frequency.py
125 lines (105 loc) · 4.77 KB
/
feature_frequency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import csv
import math
import os
import numpy as np
import config
import pickle
import pylab as plt
import torch
from config import gamma
def calculate(attention_name, dataset_name, frequency_name, plot_directory=None):
with open('data/Loaded-' + dataset_name + '/data_test.dump', 'rb') as dump_data_file:
X_test = pickle.load(dump_data_file)
label_test = torch.from_numpy(
np.loadtxt(open('data/Loaded-' + dataset_name + '/label_test.csv', "rb"), delimiter=",", skiprows=1))
x_test = torch.from_numpy(X_test)
y_test = label_test.permute(1, 0)
feature_frequency_file = open(frequency_name+".csv", "a")
freq_header = ['cat', 'dist']
for k in range(config.num_features):
freq_header.append('f' + str(k))
freq_writer = csv.writer(feature_frequency_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
if os.stat(frequency_name+".csv").st_size == 0:
freq_writer.writerow(freq_header)
attention = np.loadtxt(open(attention_name+'.csv', "rb"), delimiter=",", skiprows=1, usecols=[0] + list(range(3, 132)))
file_names = np.genfromtxt(open(attention_name + '.csv', "rb"), delimiter=",", skip_header=1, usecols=[1], dtype='str')
print(attention.shape)
frequency = np.zeros((len(config.subcategories), 3, config.num_features))
for i in range(attention.shape[0]):
attention_weights = attention[i, 2:]
test_index = int(attention[i, 0])
injected_index = int(attention[i, 1])
pk, length_pk = peak_beginning(attention_weights.squeeze().tolist())
estimate = pk
if plot_directory is not None:
if not os.path.exists(plot_directory):
os.makedirs(plot_directory)
plt.plot(attention_weights)
plt.savefig(plot_directory + "/" + file_names[i] + ".png")
plt.clf()
freq = localize_features(estimate, x_test[test_index, :, :])
cat_target = y_test[1][test_index]
frequency[int(cat_target.item())-1] += freq
subcat_dict = dict(config.subcategories)
frequency_sum = np.zeros((len(config.subcategories), config.num_features))
for i in range(22):
if np.max(frequency[i]) == 0:
continue
for j in range(3):
frequency_sum[i] += math.pow(gamma, j) * frequency[i, j]
row = [list(subcat_dict.keys())[list(subcat_dict.values()).index(i+1)], "["+str(1+((j+1)*3))+"+]"]
row.extend(frequency[i][j])
freq_writer.writerow(row)
frequency_sum[i] = frequency_sum[i] / np.max(frequency_sum[i])
# AS REQUESTED!
frequency_sum[:7, 0] = 0
frequency_sum[8:, 0] = 0
frequency_sum[:, 4] = 0
frequency_sum[:, 2] = 0
frequency_sum[:, 5] = 0
frequency_sum[10:11, 1:9] = frequency_sum[10:11, 1:9]/10 # fade lifecycle features
frequency_sum[14, 1:9] = frequency_sum[14, 1:9] / 10 # fade lifecycle features
frequency_sum[17, 1:9] = frequency_sum[17, 1:9] / 10 # fade lifecycle features
im = plt.imshow(frequency_sum, cmap='jet', interpolation='nearest')
plt.colorbar(im, orientation='horizontal')
plt.xticks(np.arange(84, step=4))
plt.yticks(np.arange(23), subcat_dict.keys())
plt.show()
feature_frequency_file.close()
def localize_features(estimate, x_test):
freq = np.zeros((3, config.num_features))
dif_ind = []
dif_big_ind = []
dif_biggest_ind = []
for feature in range(84):
myset = set(x_test[ max(0, estimate):min(127, estimate + 4), feature].tolist())
biggerset = set(x_test[max(0, estimate):min(127, estimate + 7), feature].tolist())
biggestset = set(x_test[max(0, estimate):min(127, estimate + 10), feature].tolist())
if len(myset) > 1:
freq[0][feature] += 1
dif_ind.append(feature)
if len(biggerset) > 1:
if freq[0][feature] == 0:
freq[1][feature] += 1
dif_big_ind.append(feature)
if len(biggestset) > 1:
if freq[0][feature] == 0 and freq[1][feature] == 0:
freq[2][feature] += 1
dif_biggest_ind.append(feature)
diff = "[+4]:" + str(dif_ind) + "*[+7]:" + str(dif_big_ind) + "*[+10]:" + str(dif_biggest_ind)
return freq, diff
def peak_beginning(attention_weights):
tallest = -1
index = -1
for j in range(len(attention_weights)-1):
if attention_weights[j + 1] < attention_weights[j]:
continue
start = j
while j<len(attention_weights)-1 and attention_weights[j+1] > attention_weights[j]:
j += 1
if (attention_weights[j] - attention_weights[start]) > tallest:
tallest = (attention_weights[j] - attention_weights[start])
index = start
return index, tallest
if __name__ == '__main__':
calculate('my_attention', "Dataset-12", "my_freq", "plots")