-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathmodel.py
564 lines (450 loc) · 27.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import torch
from torch import nn
import math
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class MultiHeadAttention(nn.Module):
"""
The Multi-Head Attention sublayer.
"""
def __init__(self, d_model, n_heads, d_queries, d_values, dropout, in_decoder=False):
"""
:param d_model: size of vectors throughout the transformer model, i.e. input and output sizes for this sublayer
:param n_heads: number of heads in the multi-head attention
:param d_queries: size of query vectors (and also the size of the key vectors)
:param d_values: size of value vectors
:param dropout: dropout probability
:param in_decoder: is this Multi-Head Attention sublayer instance in the decoder?
"""
super(MultiHeadAttention, self).__init__()
self.d_model = d_model
self.n_heads = n_heads
self.d_queries = d_queries
self.d_values = d_values
self.d_keys = d_queries # size of key vectors, same as of the query vectors to allow dot-products for similarity
self.in_decoder = in_decoder
# A linear projection to cast (n_heads sets of) queries from the input query sequences
self.cast_queries = nn.Linear(d_model, n_heads * d_queries)
# A linear projection to cast (n_heads sets of) keys and values from the input reference sequences
self.cast_keys_values = nn.Linear(d_model, n_heads * (d_queries + d_values))
# A linear projection to cast (n_heads sets of) computed attention-weighted vectors to output vectors (of the same size as input query vectors)
self.cast_output = nn.Linear(n_heads * d_values, d_model)
# Softmax layer
self.softmax = nn.Softmax(dim=-1)
# Layer-norm layer
self.layer_norm = nn.LayerNorm(d_model)
# Dropout layer
self.apply_dropout = nn.Dropout(dropout)
def forward(self, query_sequences, key_value_sequences, key_value_sequence_lengths):
"""
Forward prop.
:param query_sequences: the input query sequences, a tensor of size (N, query_sequence_pad_length, d_model)
:param key_value_sequences: the sequences to be queried against, a tensor of size (N, key_value_sequence_pad_length, d_model)
:param key_value_sequence_lengths: true lengths of the key_value_sequences, to be able to ignore pads, a tensor of size (N)
:return: attention-weighted output sequences for the query sequences, a tensor of size (N, query_sequence_pad_length, d_model)
"""
batch_size = query_sequences.size(0) # batch size (N) in number of sequences
query_sequence_pad_length = query_sequences.size(1)
key_value_sequence_pad_length = key_value_sequences.size(1)
# Is this self-attention?
self_attention = torch.equal(key_value_sequences, query_sequences)
# Store input for adding later
input_to_add = query_sequences.clone()
# Apply layer normalization
query_sequences = self.layer_norm(query_sequences) # (N, query_sequence_pad_length, d_model)
# If this is self-attention, do the same for the key-value sequences (as they are the same as the query sequences)
# If this isn't self-attention, they will already have been normed in the last layer of the Encoder (from whence they came)
if self_attention:
key_value_sequences = self.layer_norm(key_value_sequences) # (N, key_value_sequence_pad_length, d_model)
# Project input sequences to queries, keys, values
queries = self.cast_queries(query_sequences) # (N, query_sequence_pad_length, n_heads * d_queries)
keys, values = self.cast_keys_values(key_value_sequences).split(split_size=self.n_heads * self.d_keys,
dim=-1) # (N, key_value_sequence_pad_length, n_heads * d_keys), (N, key_value_sequence_pad_length, n_heads * d_values)
# Split the last dimension by the n_heads subspaces
queries = queries.contiguous().view(batch_size, query_sequence_pad_length, self.n_heads,
self.d_queries) # (N, query_sequence_pad_length, n_heads, d_queries)
keys = keys.contiguous().view(batch_size, key_value_sequence_pad_length, self.n_heads,
self.d_keys) # (N, key_value_sequence_pad_length, n_heads, d_keys)
values = values.contiguous().view(batch_size, key_value_sequence_pad_length, self.n_heads,
self.d_values) # (N, key_value_sequence_pad_length, n_heads, d_values)
# Re-arrange axes such that the last two dimensions are the sequence lengths and the queries/keys/values
# And then, for convenience, convert to 3D tensors by merging the batch and n_heads dimensions
# This is to prepare it for the batch matrix multiplication (i.e. the dot product)
queries = queries.permute(0, 2, 1, 3).contiguous().view(-1, query_sequence_pad_length,
self.d_queries) # (N * n_heads, query_sequence_pad_length, d_queries)
keys = keys.permute(0, 2, 1, 3).contiguous().view(-1, key_value_sequence_pad_length,
self.d_keys) # (N * n_heads, key_value_sequence_pad_length, d_keys)
values = values.permute(0, 2, 1, 3).contiguous().view(-1, key_value_sequence_pad_length,
self.d_values) # (N * n_heads, key_value_sequence_pad_length, d_values)
# Perform multi-head attention
# Perform dot-products
attention_weights = torch.bmm(queries, keys.permute(0, 2,
1)) # (N * n_heads, query_sequence_pad_length, key_value_sequence_pad_length)
# Scale dot-products
attention_weights = (1. / math.sqrt(
self.d_keys)) * attention_weights # (N * n_heads, query_sequence_pad_length, key_value_sequence_pad_length)
# Before computing softmax weights, prevent queries from attending to certain keys
# MASK 1: keys that are pads
not_pad_in_keys = torch.LongTensor(range(key_value_sequence_pad_length)).unsqueeze(0).unsqueeze(0).expand_as(
attention_weights).to(device) # (N * n_heads, query_sequence_pad_length, key_value_sequence_pad_length)
not_pad_in_keys = not_pad_in_keys < key_value_sequence_lengths.repeat_interleave(self.n_heads).unsqueeze(
1).unsqueeze(2).expand_as(
attention_weights) # (N * n_heads, query_sequence_pad_length, key_value_sequence_pad_length)
# Note: PyTorch auto-broadcasts singleton dimensions in comparison operations (as well as arithmetic operations)
# Mask away by setting such weights to a large negative number, so that they evaluate to 0 under the softmax
attention_weights = attention_weights.masked_fill(~not_pad_in_keys, -float(
'inf')) # (N * n_heads, query_sequence_pad_length, key_value_sequence_pad_length)
# MASK 2: if this is self-attention in the decoder, keys chronologically ahead of queries
if self.in_decoder and self_attention:
# Therefore, a position [n, i, j] is valid only if j <= i
# torch.tril(), i.e. lower triangle in a 2D matrix, sets j > i to 0
not_future_mask = torch.ones_like(
attention_weights).tril().bool().to(
device) # (N * n_heads, query_sequence_pad_length, key_value_sequence_pad_length)
# Mask away by setting such weights to a large negative number, so that they evaluate to 0 under the softmax
attention_weights = attention_weights.masked_fill(~not_future_mask, -float(
'inf')) # (N * n_heads, query_sequence_pad_length, key_value_sequence_pad_length)
# Compute softmax along the key dimension
attention_weights = self.softmax(
attention_weights) # (N * n_heads, query_sequence_pad_length, key_value_sequence_pad_length)
# Apply dropout
attention_weights = self.apply_dropout(
attention_weights) # (N * n_heads, query_sequence_pad_length, key_value_sequence_pad_length)
# Calculate sequences as the weighted sums of values based on these softmax weights
sequences = torch.bmm(attention_weights, values) # (N * n_heads, query_sequence_pad_length, d_values)
# Unmerge batch and n_heads dimensions and restore original order of axes
sequences = sequences.contiguous().view(batch_size, self.n_heads, query_sequence_pad_length,
self.d_values).permute(0, 2, 1,
3) # (N, query_sequence_pad_length, n_heads, d_values)
# Concatenate the n_heads subspaces (each with an output of size d_values)
sequences = sequences.contiguous().view(batch_size, query_sequence_pad_length,
-1) # (N, query_sequence_pad_length, n_heads * d_values)
# Transform the concatenated subspace-sequences into a single output of size d_model
sequences = self.cast_output(sequences) # (N, query_sequence_pad_length, d_model)
# Apply dropout and residual connection
sequences = self.apply_dropout(sequences) + input_to_add # (N, query_sequence_pad_length, d_model)
return sequences
class PositionWiseFCNetwork(nn.Module):
"""
The Position-Wise Feed Forward Network sublayer.
"""
def __init__(self, d_model, d_inner, dropout):
"""
:param d_model: size of vectors throughout the transformer model, i.e. input and output sizes for this sublayer
:param d_inner: an intermediate size
:param dropout: dropout probability
"""
super(PositionWiseFCNetwork, self).__init__()
self.d_model = d_model
self.d_inner = d_inner
# Layer-norm layer
self.layer_norm = nn.LayerNorm(d_model)
# A linear layer to project from the input size to an intermediate size
self.fc1 = nn.Linear(d_model, d_inner)
# ReLU
self.relu = nn.ReLU()
# A linear layer to project from the intermediate size to the output size (same as the input size)
self.fc2 = nn.Linear(d_inner, d_model)
# Dropout layer
self.apply_dropout = nn.Dropout(dropout)
def forward(self, sequences):
"""
Forward prop.
:param sequences: input sequences, a tensor of size (N, pad_length, d_model)
:return: transformed output sequences, a tensor of size (N, pad_length, d_model)
"""
# Store input for adding later
input_to_add = sequences.clone() # (N, pad_length, d_model)
# Apply layer-norm
sequences = self.layer_norm(sequences) # (N, pad_length, d_model)
# Transform position-wise
sequences = self.apply_dropout(self.relu(self.fc1(sequences))) # (N, pad_length, d_inner)
sequences = self.fc2(sequences) # (N, pad_length, d_model)
# Apply dropout and residual connection
sequences = self.apply_dropout(sequences) + input_to_add # (N, pad_length, d_model)
return sequences
class Encoder(nn.Module):
"""
The Encoder.
"""
def __init__(self, vocab_size, positional_encoding, d_model, n_heads, d_queries, d_values, d_inner, n_layers,
dropout):
"""
:param vocab_size: size of the (shared) vocabulary
:param positional_encoding: positional encodings up to the maximum possible pad-length
:param d_model: size of vectors throughout the transformer model, i.e. input and output sizes for the Encoder
:param n_heads: number of heads in the multi-head attention
:param d_queries: size of query vectors (and also the size of the key vectors) in the multi-head attention
:param d_values: size of value vectors in the multi-head attention
:param d_inner: an intermediate size in the position-wise FC
:param n_layers: number of [multi-head attention + position-wise FC] layers in the Encoder
:param dropout: dropout probability
"""
super(Encoder, self).__init__()
self.vocab_size = vocab_size
self.positional_encoding = positional_encoding
self.d_model = d_model
self.n_heads = n_heads
self.d_queries = d_queries
self.d_values = d_values
self.d_inner = d_inner
self.n_layers = n_layers
self.dropout = dropout
# An embedding layer
self.embedding = nn.Embedding(vocab_size, d_model)
# Set the positional encoding tensor to be un-update-able, i.e. gradients aren't computed
self.positional_encoding.requires_grad = False
# Encoder layers
self.encoder_layers = nn.ModuleList([self.make_encoder_layer() for i in range(n_layers)])
# Dropout layer
self.apply_dropout = nn.Dropout(dropout)
# Layer-norm layer
self.layer_norm = nn.LayerNorm(d_model)
def make_encoder_layer(self):
"""
Creates a single layer in the Encoder by combining a multi-head attention sublayer and a position-wise FC sublayer.
"""
# A ModuleList of sublayers
encoder_layer = nn.ModuleList([MultiHeadAttention(d_model=self.d_model,
n_heads=self.n_heads,
d_queries=self.d_queries,
d_values=self.d_values,
dropout=self.dropout,
in_decoder=False),
PositionWiseFCNetwork(d_model=self.d_model,
d_inner=self.d_inner,
dropout=self.dropout)])
return encoder_layer
def forward(self, encoder_sequences, encoder_sequence_lengths):
"""
Forward prop.
:param encoder_sequences: the source language sequences, a tensor of size (N, pad_length)
:param encoder_sequence_lengths: true lengths of these sequences, a tensor of size (N)
:return: encoded source language sequences, a tensor of size (N, pad_length, d_model)
"""
pad_length = encoder_sequences.size(1) # pad-length of this batch only, varies across batches
# Sum vocab embeddings and position embeddings
encoder_sequences = self.embedding(encoder_sequences) * math.sqrt(self.d_model) + self.positional_encoding[:,
:pad_length, :].to(
device) # (N, pad_length, d_model)
# Dropout
encoder_sequences = self.apply_dropout(encoder_sequences) # (N, pad_length, d_model)
# Encoder layers
for encoder_layer in self.encoder_layers:
# Sublayers
encoder_sequences = encoder_layer[0](query_sequences=encoder_sequences,
key_value_sequences=encoder_sequences,
key_value_sequence_lengths=encoder_sequence_lengths) # (N, pad_length, d_model)
encoder_sequences = encoder_layer[1](sequences=encoder_sequences) # (N, pad_length, d_model)
# Apply layer-norm
encoder_sequences = self.layer_norm(encoder_sequences) # (N, pad_length, d_model)
return encoder_sequences
class Decoder(nn.Module):
"""
The Decoder.
"""
def __init__(self, vocab_size, positional_encoding, d_model, n_heads, d_queries, d_values, d_inner, n_layers,
dropout):
"""
:param vocab_size: size of the (shared) vocabulary
:param positional_encoding: positional encodings up to the maximum possible pad-length
:param d_model: size of vectors throughout the transformer model, i.e. input and output sizes for the Decoder
:param n_heads: number of heads in the multi-head attention
:param d_queries: size of query vectors (and also the size of the key vectors) in the multi-head attention
:param d_values: size of value vectors in the multi-head attention
:param d_inner: an intermediate size in the position-wise FC
:param n_layers: number of [multi-head attention + multi-head attention + position-wise FC] layers in the Decoder
:param dropout: dropout probability
"""
super(Decoder, self).__init__()
self.vocab_size = vocab_size
self.positional_encoding = positional_encoding
self.d_model = d_model
self.n_heads = n_heads
self.d_queries = d_queries
self.d_values = d_values
self.d_inner = d_inner
self.n_layers = n_layers
self.dropout = dropout
# An embedding layer
self.embedding = nn.Embedding(vocab_size, d_model)
# Set the positional encoding tensor to be un-update-able, i.e. gradients aren't computed
self.positional_encoding.requires_grad = False
# Decoder layers
self.decoder_layers = nn.ModuleList([self.make_decoder_layer() for i in range(n_layers)])
# Dropout layer
self.apply_dropout = nn.Dropout(dropout)
# Layer-norm layer
self.layer_norm = nn.LayerNorm(d_model)
# Output linear layer that will compute logits for the vocabulary
self.fc = nn.Linear(d_model, vocab_size)
def make_decoder_layer(self):
"""
Creates a single layer in the Decoder by combining two multi-head attention sublayers and a position-wise FC sublayer.
"""
# A ModuleList of sublayers
decoder_layer = nn.ModuleList([MultiHeadAttention(d_model=self.d_model,
n_heads=self.n_heads,
d_queries=self.d_queries,
d_values=self.d_values,
dropout=self.dropout,
in_decoder=True),
MultiHeadAttention(d_model=self.d_model,
n_heads=self.n_heads,
d_queries=self.d_queries,
d_values=self.d_values,
dropout=self.dropout,
in_decoder=True),
PositionWiseFCNetwork(d_model=self.d_model,
d_inner=self.d_inner,
dropout=self.dropout)])
return decoder_layer
def forward(self, decoder_sequences, decoder_sequence_lengths, encoder_sequences, encoder_sequence_lengths):
"""
Forward prop.
:param decoder_sequences: the source language sequences, a tensor of size (N, pad_length)
:param decoder_sequence_lengths: true lengths of these sequences, a tensor of size (N)
:param encoder_sequences: encoded source language sequences, a tensor of size (N, encoder_pad_length, d_model)
:param encoder_sequence_lengths: true lengths of these sequences, a tensor of size (N)
:return: decoded target language sequences, a tensor of size (N, pad_length, vocab_size)
"""
pad_length = decoder_sequences.size(1) # pad-length of this batch only, varies across batches
# Sum vocab embeddings and position embeddings
decoder_sequences = self.embedding(decoder_sequences) * math.sqrt(self.d_model) + self.positional_encoding[:,
:pad_length, :].to(
device) # (N, pad_length, d_model)
# Dropout
decoder_sequences = self.apply_dropout(decoder_sequences)
# Decoder layers
for decoder_layer in self.decoder_layers:
# Sublayers
decoder_sequences = decoder_layer[0](query_sequences=decoder_sequences,
key_value_sequences=decoder_sequences,
key_value_sequence_lengths=decoder_sequence_lengths) # (N, pad_length, d_model)
decoder_sequences = decoder_layer[1](query_sequences=decoder_sequences,
key_value_sequences=encoder_sequences,
key_value_sequence_lengths=encoder_sequence_lengths) # (N, pad_length, d_model)
decoder_sequences = decoder_layer[2](sequences=decoder_sequences) # (N, pad_length, d_model)
# Apply layer-norm
decoder_sequences = self.layer_norm(decoder_sequences) # (N, pad_length, d_model)
# Find logits over vocabulary
decoder_sequences = self.fc(decoder_sequences) # (N, pad_length, vocab_size)
return decoder_sequences
class Transformer(nn.Module):
"""
The Transformer network.
"""
def __init__(self, vocab_size, positional_encoding, d_model=512, n_heads=8, d_queries=64, d_values=64,
d_inner=2048, n_layers=6, dropout=0.1):
"""
:param vocab_size: size of the (shared) vocabulary
:param positional_encoding: positional encodings up to the maximum possible pad-length
:param d_model: size of vectors throughout the transformer model
:param n_heads: number of heads in the multi-head attention
:param d_queries: size of query vectors (and also the size of the key vectors) in the multi-head attention
:param d_values: size of value vectors in the multi-head attention
:param d_inner: an intermediate size in the position-wise FC
:param n_layers: number of layers in the Encoder and Decoder
:param dropout: dropout probability
"""
super(Transformer, self).__init__()
self.vocab_size = vocab_size
self.positional_encoding = positional_encoding
self.d_model = d_model
self.n_heads = n_heads
self.d_queries = d_queries
self.d_values = d_values
self.d_inner = d_inner
self.n_layers = n_layers
self.dropout = dropout
# Encoder
self.encoder = Encoder(vocab_size=vocab_size,
positional_encoding=positional_encoding,
d_model=d_model,
n_heads=n_heads,
d_queries=d_queries,
d_values=d_values,
d_inner=d_inner,
n_layers=n_layers,
dropout=dropout)
# Decoder
self.decoder = Decoder(vocab_size=vocab_size,
positional_encoding=positional_encoding,
d_model=d_model,
n_heads=n_heads,
d_queries=d_queries,
d_values=d_values,
d_inner=d_inner,
n_layers=n_layers,
dropout=dropout)
# Initialize weights
self.init_weights()
def init_weights(self):
"""
Initialize weights in the transformer model.
"""
# Glorot uniform initialization with a gain of 1.
for p in self.parameters():
# Glorot initialization needs at least two dimensions on the tensor
if p.dim() > 1:
nn.init.xavier_uniform_(p, gain=1.)
# Share weights between the embedding layers and the logit layer
nn.init.normal_(self.encoder.embedding.weight, mean=0., std=math.pow(self.d_model, -0.5))
self.decoder.embedding.weight = self.encoder.embedding.weight
self.decoder.fc.weight = self.decoder.embedding.weight
print("Model initialized.")
def forward(self, encoder_sequences, decoder_sequences, encoder_sequence_lengths, decoder_sequence_lengths):
"""
Forward propagation.
:param encoder_sequences: source language sequences, a tensor of size (N, encoder_sequence_pad_length)
:param decoder_sequences: target language sequences, a tensor of size (N, decoder_sequence_pad_length)
:param encoder_sequence_lengths: true lengths of source language sequences, a tensor of size (N)
:param decoder_sequence_lengths: true lengths of target language sequences, a tensor of size (N)
:return: decoded target language sequences, a tensor of size (N, decoder_sequence_pad_length, vocab_size)
"""
# Encoder
encoder_sequences = self.encoder(encoder_sequences,
encoder_sequence_lengths) # (N, encoder_sequence_pad_length, d_model)
# Decoder
decoder_sequences = self.decoder(decoder_sequences, decoder_sequence_lengths, encoder_sequences,
encoder_sequence_lengths) # (N, decoder_sequence_pad_length, vocab_size)
return decoder_sequences
class LabelSmoothedCE(torch.nn.Module):
"""
Cross Entropy loss with label-smoothing as a form of regularization.
See "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567
"""
def __init__(self, eps=0.1):
"""
:param eps: smoothing co-efficient
"""
super(LabelSmoothedCE, self).__init__()
self.eps = eps
def forward(self, inputs, targets, lengths):
"""
Forward prop.
:param inputs: decoded target language sequences, a tensor of size (N, pad_length, vocab_size)
:param targets: gold target language sequences, a tensor of size (N, pad_length)
:param lengths: true lengths of these sequences, to be able to ignore pads, a tensor of size (N)
:return: mean label-smoothed cross-entropy loss, a scalar
"""
# Remove pad-positions and flatten
inputs, _, _, _ = pack_padded_sequence(input=inputs,
lengths=lengths.cpu(), # the "lengths" tensor is expected to be on the CPU
batch_first=True,
enforce_sorted=False) # (sum(lengths), vocab_size)
targets, _, _, _ = pack_padded_sequence(input=targets,
lengths=lengths.cpu(),
batch_first=True,
enforce_sorted=False) # (sum(lengths))
# "Smoothed" one-hot vectors for the gold sequences
target_vector = torch.zeros_like(inputs).scatter(dim=1, index=targets.unsqueeze(1),
value=1.).to(device) # (sum(lengths), n_classes), one-hot
target_vector = target_vector * (1. - self.eps) + self.eps / target_vector.size(
1) # (sum(lengths), n_classes), "smoothed" one-hot
# Compute smoothed cross-entropy loss
loss = (-1 * target_vector * F.log_softmax(inputs, dim=1)).sum(dim=1) # (sum(lengths))
# Compute mean loss
loss = torch.mean(loss)
return loss