-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathn3lo500new.f
8174 lines (8167 loc) · 196 KB
/
n3lo500new.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
subroutine n3lo500new
c
c******************************************************************
c
c Final version, December 2016.
c
c******************************************************************
c
c This code computes the
c
c Charge-Dependent Chiral NN Potential at Order Four
c --------------------------------------------------
c applying a cutoff of 500 MeV: N3LO(500) of A.D.2017.
c ---------------------------------------------------
c
c this package is self-contained and includes
c all subroutines needed.
c only `n3lo500new' needs to be called by the user.
c all codes are consistently in double precision.
c when working on an UNIX/LINUX system, it is recommended
c to compile this code with the "static" option
c ( " -s " on some compilers).
c more information on the code is given below.
c
c*******************************************************************
c
c authors: D. R. Entem, R. Machleidt, and Y. Nosyk
c department of physics
c university of idaho
c moscow, idaho 83844-0903
c u. s. a.
c e-mail: [email protected]
c
c Reference:
c D. R. Entem, R. Machleidt, and Y. Nosyk,
c Phys. Rev. C 96, 024004 (2017).
c
c*******************************************************************
c*******************************************************************
c
c
c
c
implicit real*8 (a-h,o-z)
c
c
common /crdwrt/ kread,kwrite,kpunch,kda(9)
c
c arguments and values of this subroutine
c
common /cpot/ v(6),xmev,ymev
common /cstate/ j,heform,sing,trip,coup,endep,label
common /cnn/ inn
c
c
c this has been the end of the common-blocks containing
c the arguments and values of this subroutine.
c
c specifications for these common blocks
c
logical heform,sing,trip,coup,endep
character*4 label
c
c
c*********************************************************************
c THE ABOVE FOUR COMMON BLOCKS IS ALL THE USER NEEDS
c TO BE FAMILIAR WITH.
c*********************************************************************
c
c here are now some explanations of what those common blocks contain:
c -------------------------------------------------------------------
c
c xmev and ymev are the final and initial relative momenta,
c respectively, in units of mev/c.
c v is the potential in units of mev**(-2).
c concerning units, factors of pi, etc.,
c cf. with the partial-wave Lippmann-Schwinger equation, Eq. (A25),
c and with the phase shift relation, Eq. (A33), given in Appendix A
c of the article: R. Machleidt, PRC 63, 024001 (2001).
c
c the partial-wave Lippmann-Schwinger equation for the
c K-matrix reads:
c
c K(q',q) = V(q',q) + M P \int dk k^2 V(q',k) K(k,q)/(q^2-k^2)
c
c with M the nucleon mass in MeV and P denoting the principal value;
c V(q',q) as provided by this code in common block /cpot/;
c all momenta in MeV.
c
c the phase-shift relation is:
c
c tan \delta_L = -(pi/2) M q K_L(q,q)
c
c with M and q in units of MeV, K_L in MeV**(-2) like V.
c
c
c if heform=.true., v contains the 6 matrix elements
c associated with one j in the helicity formalism
c in the following order:
c 0v, 1v, 12v, 34v, 55v, 66v
c (for notation see Appendix A of above article).
c
c if heform=.false., v contains the 6 matrix elements
c associated with one j in the lsj formalism
c in the following order:
c 0v(singlet), 1v(uncoupled triplet), v++, v--, v+-, v-+ (coupled)
c (for notation, see explanations given in the above article
c below Eq. (A31)).
c
c j is the total angular momentum. there is essentially no upper
c limit for j.
c sing, trip, and coup should in general be .true..
c endep and label can be ignored.
c it is customary, to set kread=5 and kwrite=6;
c ignore kpunch and kda(9).
c
c the meaning of the parameter inn in the common block
c
c common /cnn/ inn
c is
c inn=1 means pp potential,
c inn=2 means np potential, and
c inn=3 means nn potential.
c
c the user needs to include this common block in his/her code,
c and specify which potential he/she wants to use.
c
c
c THIS IS ESSENTIALLY ALL THE USER NEEDS TO KNOW.
c
c if you have further questions, do not hesitate to contact
c
c**********************************************************************
c
c
c common block for all chi-subroutines
c
common /cchi/ vj(32,270),c(20,270),fff,ff,f(52),aa(96),ai(19,30),
1 wnn(3),wdd(3),x,xx,y,yy,xy2,xxpyy,ex,ey,eem12,
2 gaa(3),fpia(3),ezz1(3),ezz2(3),ct(96),wt(96),
3 ic(20,270),ift(3),mint(3),maxt(3),nt,
4 mge,mgg(40,3),mggo(40,3),ima(30,40,3),
5 imaa(3),imea(3),ime,im,mc,m,mg,inter,ide,idde,
6 indc(2,270),indpar(3),indxy
c
c specifications for this common block
c
logical indc,indxy,indpar
c
common /comlsj/ clsj(15,50),cutlsj(15,50),indlsj
logical indlsj
c
common /crrr/ rrr
c
c
c further specifications
c
dimension vl(4),adminv(4,4),ldminv(4),mdminv(4)
dimension vv0(6),vv2(6),vv4(6)
character*4 nucnuc(3)
character*4 mesong(40)
logical index
logical indmg(40)
data mesong/'0- ','0-t ','0-st','0+ ','0+st',
1 '1- ','1-t ','1-tt','1-st','1-ss',
2 'c ','ss ','ls ','sq ','sk ',
3 'sl ',
4 24*' '/
data index/.false./
data indmg/40*.false./
data jj/-1/
data pi/3.141592653589793d0/
data innn/-1/
data nucnuc/'446p','446n','446m'/
c*********** 2016.12.12 **********
save
c
c
c
c
if (index) go to 10
index=.true.
c
c
c call subroutine chipar once and only once
c
c
call chipar
c -----------
c
c
c if you want the potential to be zero for very large momenta,
c choose rrr=1000.
c if you want no technical problems in the calculation of the deuteron
c wave functions, choose rrr=80.
c
rrr=80.
c
10 continue
c
c
c
c
if (inn.lt.1.or.inn.gt.3) then
c choose the np potential as the default:
inn=2
endif
if (j.lt.0) then
write (kwrite,19002)
19002 format (////' error in n3lo: total angular momentum j',
1' is negative.'/' execution terminated.'////)
stop
endif
c
c
c
c
c set the inn dependent parameters
c
if (inn.eq.innn) go to 30
innn=inn
inter=inn
label=nucnuc(inter)
c
go to (21,22,23), inter
21 write (kwrite,10001)
10001 format (' The pp potential is used.')
go to 24
22 write (kwrite,10002)
10002 format (' The np potential is used.')
go to 24
23 write (kwrite,10003)
10003 format (' The nn potential is used.')
24 write (kwrite,10004)
10004 format (' -------------------------'//)
c
c
iftgo=ift(inter)+1
dwn=1.d0/wnn(inter)
c
c
c prepare constant over-all factor
c
fac=pi/(2.d0*pi)**3*dwn*dwn
c ---------------------------
c
c
c
iman=imaa(inter)
imen=imea(inter)
c
imanm1=iman-1
c
iman1=imanm1+1
iman2=imanm1+2
iman3=imanm1+3
iman4=imanm1+4
iman5=imanm1+5
iman6=imanm1+6
iman7=imanm1+7
iman8=imanm1+8
iman9=imanm1+9
imen24=imen-24
imen23=imen-23
imen22=imen-22
imen21=imen-21
imen15=imen-15
imen14=imen-14
c
c
c
c
30 if (j.eq.jj) go to 50
jj=j
if (j.eq.0) go to 50
aj=dble(j)
aj1=dble(j+1)
a2j1=dble(2*j+1)
aaj6=dsqrt(aj*aj1)
c
c coefficient matrix for the translations into lsj formalism
c
adminv(1,1)=aj1
adminv(1,2)=aj
adminv(1,3)=-aaj6
adminv(1,4)=-aaj6
adminv(2,1)=aj
adminv(2,2)=aj1
adminv(2,3)=aaj6
adminv(2,4)=aaj6
adminv(3,1)=aaj6
adminv(3,2)=-aaj6
adminv(3,3)=aj1
adminv(3,4)=-aj
adminv(4,1)=aaj6
adminv(4,2)=-aaj6
adminv(4,3)=-aj
adminv(4,4)=aj1
c
c inversion
c
call dminv (adminv,4,deter,ldminv,mdminv)
c
c
c
c
c prepare expressions depending on x and y
c ----------------------------------------
c ----------------------------------------
c
c
c
c
50 xa=xmev*dwn
ya=ymev*dwn
indxy=.false.
x=xa
xx=x*x
y=ya
yy=y*y
xy2=x*y*2.d0
xxpyy=xx+yy
ex=dsqrt(1.d0+xx)
ey=dsqrt(1.d0+yy)
eem12=(ex*ey-1.d0)*2.d0
c
c
xy=xy2*0.5d0
ee=ex*ey
ree=dsqrt(ee)
eem1=ee-1.d0
eme=ex-ey
emeh=eme*0.5d0
emehq=emeh*emeh
eep1=ee+1.d0
epe=ex+ey
xxyy=xx*yy
c
c
xxpyyh=xxpyy*0.5d0
xy3=xy*3.d0
xy4=xy*4.d0
c
c
c
c
do 63 iv=1,6
vv0(iv)=0.d0
vv2(iv)=0.d0
vv4(iv)=0.d0
63 v(iv)=0.d0
do 65 il=iman,imen
do 65 iv=1,32
65 vj(iv,il)=0.d0
c
c
c
c
c prepare over-all factor
c
c
go to (70,71,72),iftgo
c
c no additional factor
c
70 fff=fac
go to 80
c
c minimal relativity
c
71 fff=fac/ree
go to 80
c
c factor m/e*m/e
c
72 fff=fac/ee
c
c
80 continue
c
c
c
c
c contributions
c -------------
c -------------
c
c
c
c
do 5995 img=1,mge
mg=mggo(img,inter)
if (mg.gt.16) go to 9000
if (mg.eq.0) go to 8000
me=mgg(mg,inter)
go to (9000,9000,9000,9000,9000,9000,9000,9000,9000,9000,
1 1100,1200,1300,1400,1500,1600),mg
c
c
c
c
c c , central force
c -------------------
c
c
c
c
1100 mc=1
c
ff=1.d0
f(1)=2.d0
f(2)=0.d0
f(3)=f(1)
f(4)=f(2)
f(5)=f(2)
f(6)=f(1)
f(7)=-f(1)
f(8)=f(7)
c
call chistr(1,1,me)
go to 5995
c
c
c
c
c ss , spin-spin force
c ---------------------
c
c
c
c
1200 mc=1
c
ff=1.d0
f(1)=-6.d0
f(2)=0.d0
f(3)=2.d0
f(4)=0.d0
f(5)=0.d0
f(6)=f(3)
f(7)=-f(3)
f(8)=f(7)
c
call chistr(1,1,me)
go to 5995
c
c
c
c
c ls , spin-orbit force
c ----------------------
c
c
c
c
1300 mc=1
c
ff=1.d0
f(1)=0.d0
f(2)=0.d0
f(3)=0.d0
f(4)=-xy2
f(5)=-xy2
f(6)=0.d0
f(7)=0.d0
f(8)=0.d0
f(9)=0.d0
f(10)=+xy2
f(11)=-xy2
c
call chistr(2,1,me)
go to 5995
c
c
c
c
c sq , sq tensor force (where q denotes the momentum transfer)
c ---------------------
c
c
c
c
1400 mc=1
c
ff=1.d0
f(1)=-xxpyy*2.0d0
f(2)=xy*4.d0
f(3)=-f(1)
f(4)=-f(2)
f(5)=f(2)
f(6)=f(1)
f(7)=(xx-yy)*2.0d0
f(8)=-f(7)
c
call chistr(1,1,me)
go to 5995
c
c
c
c
c sk , sk tensor force (where k denotes the average momentum)
c ---------------------
c
c
c
c
1500 mc=1
c
ff=0.25d0
f(1)=-xxpyy*2.0d0
f(2)=-xy*4.d0
f(3)=-f(1)
f(4)=-f(2)
f(5)=f(2)
f(6)=f(1)
f(7)=(xx-yy)*2.0d0
f(8)=-f(7)
c
call chistr(1,1,me)
go to 5995
c
c
c
c
c sl , "quadratic spin-orbit force"
c or sigma-l operator
c ----------------------------------
c
c
c
c
1600 mc=1
c
ff=1.d0
f(1)=-xxyy*2.d0
f(2)=0.d0
f(3)=f(1)
f(4)=f(2)
f(5)=f(2)
f(6)=-f(1)
f(7)=f(1)
f(8)=f(7)
f(9)=f(6)*2.d0
c
call chistr(4,1,me)
go to 5995
c
c
c
c
c
c this has been the end of the contributions of mesons
c ----------------------------------------------------
c
c
c
c
c errors and warnings
c -------------------
c
c
c
c
9000 if (indmg(mg)) go to 5995
c**** write (kwrite,19000) mesong(mg)
19000 format(1h ////' warning in chinn: contribution ',a4,' does not exi
1st in this program.'/' contribution ignored. execution continued.'
2////)
indmg(mg)=.true.
c
c
c
c
5995 continue
c
c
c
c
c add up contributions
c --------------------
c
c
c
c
8000 continue
c
c
c charge-dependent OPE contribution
c ---------------------------------
c
if (mod(j,2).eq.1) go to 8020
c
c j even
c
v(1)=-vj(1,iman1)+2.d0*vj(1,iman5)
v(1)=v(1)-vj(1,iman2)+2.d0*vj(1,iman6)
v(1)=v(1)-vj(1,iman3)+2.d0*vj(1,iman7)
v(1)=v(1)-vj(1,iman4)+2.d0*vj(1,iman8)
c
v(2)=-vj(2,iman1)-2.d0*vj(2,iman5)
v(2)=v(2)-vj(2,iman2)-2.d0*vj(2,iman6)
v(2)=v(2)-vj(2,iman3)-2.d0*vj(2,iman7)
v(2)=v(2)-vj(2,iman4)-2.d0*vj(2,iman8)
c
do 8015 iv=3,6
v(iv)=-vj(iv,iman1)+2.d0*vj(iv,iman5)
v(iv)=v(iv)-vj(iv,iman2)+2.d0*vj(iv,iman6)
v(iv)=v(iv)-vj(iv,iman3)+2.d0*vj(iv,iman7)
v(iv)=v(iv)-vj(iv,iman4)+2.d0*vj(iv,iman8)
8015 continue
go to 8030
c
c j odd
c
8020 continue
v(1)=-vj(1,iman1)-2.d0*vj(1,iman5)
v(1)=v(1)-vj(1,iman2)-2.d0*vj(1,iman6)
v(1)=v(1)-vj(1,iman3)-2.d0*vj(1,iman7)
v(1)=v(1)-vj(1,iman4)-2.d0*vj(1,iman8)
c
v(2)=-vj(2,iman1)+2.d0*vj(2,iman5)
v(2)=v(2)-vj(2,iman2)+2.d0*vj(2,iman6)
v(2)=v(2)-vj(2,iman3)+2.d0*vj(2,iman7)
v(2)=v(2)-vj(2,iman4)+2.d0*vj(2,iman8)
c
do 8025 iv=3,6
v(iv)=-vj(iv,iman1)-2.d0*vj(iv,iman5)
v(iv)=v(iv)-vj(iv,iman2)-2.d0*vj(iv,iman6)
v(iv)=v(iv)-vj(iv,iman3)-2.d0*vj(iv,iman7)
v(iv)=v(iv)-vj(iv,iman4)-2.d0*vj(iv,iman8)
8025 continue
c
c
8030 continue
c
c
if (iman9.gt.imen) go to 8500
c
c
if (.not.indlsj) then
do 8105 il=iman9,imen
do 8105 iv=1,6
8105 v(iv)=v(iv)+vj(iv,il)
else
c
c
c there are contact terms
c -----------------------
c
if (iman9.gt.imen24) go to 8200
c
c the non-contact terms
c
do 8155 il=iman9,imen24
do 8155 iv=1,6
8155 v(iv)=v(iv)+vj(iv,il)
c
c contact contributions
c ---------------------
c
8200 continue
c
c Q^0 contacts
do 8205 il=imen23,imen22
do 8205 iv=1,6
8205 vv0(iv)=vv0(iv)+vj(iv,il)
c
c Q^2 contacts
do 8215 il=imen21,imen15
do 8215 iv=1,6
8215 vv2(iv)=vv2(iv)+vj(iv,il)
c
c Q^4 contacts
do 8225 il=imen14,imen
do 8225 iv=1,6
8225 vv4(iv)=vv4(iv)+vj(iv,il)
c
c
c ------------------------------------------------------
c NOTE: partial-wave potentials that add-up to zero need
c to be cutoff, because they diverge for large momenta.
c ------------------------------------------------------
c
c use 3d3 cutoff as default for all j.gt.5 partial waves
c
if (j.gt.5) then
if (cutlsj(1,15).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,15))**(2.d0*cutlsj(1,15))
1 +(ymev/cutlsj(2,15))**(2.d0*cutlsj(1,15))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
c
do 8275 iv=1,6
vv0(iv)=vv0(iv)*expexp
vv2(iv)=vv2(iv)*expexp
8275 vv4(iv)=vv4(iv)*expexp
go to 8400
end if
c
c
c
c
c look into individual partial waves and
c multiply with partial-wave dependent cutoffs
c --------------------------------------------
c
j1=j+1
go to (8310,8320,8330,8340,8350,8360),j1
c
c
c j=0
c ---
c ---
c
8310 continue
c
c 1s0
c ---
c Q^0 term
c
if (cutlsj(1,1).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,1))**(2.d0*cutlsj(1,1))
1 +(ymev/cutlsj(2,1))**(2.d0*cutlsj(1,1))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv0(1)=vv0(1)*expexp
c
c Q^2 terms
c
if (cutlsj(3,1).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(4,1))**(2.d0*cutlsj(3,1))
1 +(ymev/cutlsj(4,1))**(2.d0*cutlsj(3,1))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv2(1)=vv2(1)*expexp
c
c Q^4 terms
c
if (cutlsj(5,1).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(6,1))**(2.d0*cutlsj(5,1))
1 +(ymev/cutlsj(6,1))**(2.d0*cutlsj(5,1))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv4(1)=vv4(1)*expexp
c
c 3p0
c ---
c Q^2 term
c
if (cutlsj(1,2).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,2))**(2.d0*cutlsj(1,2))
1 +(ymev/cutlsj(2,2))**(2.d0*cutlsj(1,2))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv2(3)=vv2(3)*expexp
vv0(3)=vv0(3)*expexp
c
c Q^4 term
c
if (cutlsj(3,2).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(4,2))**(2.d0*cutlsj(3,2))
1 +(ymev/cutlsj(4,2))**(2.d0*cutlsj(3,2))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv4(3)=vv4(3)*expexp
c
go to 8400
c
c
c j=1
c ---
c ---
c
8320 continue
c
c 1p1
c ---
c Q^2 term
c
if (cutlsj(1,3).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,3))**(2.d0*cutlsj(1,3))
1 +(ymev/cutlsj(2,3))**(2.d0*cutlsj(1,3))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv2(1)=vv2(1)*expexp
vv0(1)=vv0(1)*expexp
c
c Q^4 term
c
if (cutlsj(3,3).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(4,3))**(2.d0*cutlsj(3,3))
1 +(ymev/cutlsj(4,3))**(2.d0*cutlsj(3,3))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv4(1)=vv4(1)*expexp
c
c 3p1
c ---
c Q^2 term
c
if (cutlsj(1,4).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,4))**(2.d0*cutlsj(1,4))
1 +(ymev/cutlsj(2,4))**(2.d0*cutlsj(1,4))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv2(2)=vv2(2)*expexp
vv0(2)=vv0(2)*expexp
c
c Q^4 term
c
if (cutlsj(3,4).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(4,4))**(2.d0*cutlsj(3,4))
1 +(ymev/cutlsj(4,4))**(2.d0*cutlsj(3,4))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv4(2)=vv4(2)*expexp
c
c 3s1
c ---
c Q^0 term
c
if (cutlsj(1,5).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,5))**(2.d0*cutlsj(1,5))
1 +(ymev/cutlsj(2,5))**(2.d0*cutlsj(1,5))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv0(4)=vv0(4)*expexp
c
c Q^2 terms
c
if (cutlsj(3,5).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(4,5))**(2.d0*cutlsj(3,5))
1 +(ymev/cutlsj(4,5))**(2.d0*cutlsj(3,5))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv2(4)=vv2(4)*expexp
c
c Q^4 terms
c
if (cutlsj(5,5).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(6,5))**(2.d0*cutlsj(5,5))
1 +(ymev/cutlsj(6,5))**(2.d0*cutlsj(5,5))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv4(4)=vv4(4)*expexp
c
c 3d1
c ---
c Q^4 term
c
if (cutlsj(1,6).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,6))**(2.d0*cutlsj(1,6))
1 +(ymev/cutlsj(2,6))**(2.d0*cutlsj(1,6))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv4(3)=vv4(3)*expexp
vv2(3)=vv2(3)*expexp
vv0(3)=vv0(3)*expexp
c
c 3s/d1
c -----
c Q^2 term
c
if (cutlsj(1,7).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,7))**(2.d0*cutlsj(1,7))
1 +(ymev/cutlsj(2,7))**(2.d0*cutlsj(1,7))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv2(5)=vv2(5)*expexp
vv2(6)=vv2(6)*expexp
vv0(5)=vv0(5)*expexp
vv0(6)=vv0(6)*expexp
c
c Q^4 term
c
if (cutlsj(3,7).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(4,7))**(2.d0*cutlsj(3,7))
1 +(ymev/cutlsj(4,7))**(2.d0*cutlsj(3,7))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv4(5)=vv4(5)*expexp
vv4(6)=vv4(6)*expexp
c
go to 8400
c
c
c j=2
c ---
c ---
c
8330 continue
c
c 1d2
c ---
c Q^4 term
c
if (cutlsj(1,8).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,8))**(2.d0*cutlsj(1,8))
1 +(ymev/cutlsj(2,8))**(2.d0*cutlsj(1,8))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv4(1)=vv4(1)*expexp
vv2(1)=vv2(1)*expexp
vv0(1)=vv0(1)*expexp
c
c 3d2
c ---
c Q^4 term
c
if (cutlsj(1,9).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,9))**(2.d0*cutlsj(1,9))
1 +(ymev/cutlsj(2,9))**(2.d0*cutlsj(1,9))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv4(2)=vv4(2)*expexp
vv2(2)=vv2(2)*expexp
vv0(2)=vv0(2)*expexp
c
c 3p2
c ---
c
c Q^2 term
c
if (cutlsj(1,10).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(2,10))**(2.d0*cutlsj(1,10))
1 +(ymev/cutlsj(2,10))**(2.d0*cutlsj(1,10))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if
vv2(4)=vv2(4)*expexp
vv0(4)=vv0(4)*expexp
c
c Q^4 terms
c
if (cutlsj(3,10).eq.0.d0) then
expexp=1.d0
else
expo=(xmev/cutlsj(4,10))**(2.d0*cutlsj(3,10))
1 +(ymev/cutlsj(4,10))**(2.d0*cutlsj(3,10))
if (expo.gt.rrr) expo=rrr
expexp=dexp(-expo)
end if