You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thank you so much for this implementation. I was trying to train the magicpoint network in Linux, and I encountered this issue in NMS:
RuntimeError: Trying to create tensor with negative dimension -1459651072: [-1459651072]
On investigating, I see that the boxes have negative values. How do I correct this?
File /workspace/SuperPoint/models/magicpoint.py:39, in MagicPoint.forward(self, x)
[37](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:37) prob = output['prob']
[38](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:38) if self.nms is not None:
---> [39](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:39) prob = [box_nms(p.unsqueeze(dim=0),
[40](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:40) self.nms,
[41](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:41) min_prob=self.threshold,
[42](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:42) keep_top_k=self.top_k).squeeze(dim=0) for p in prob]
[43](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:43) prob = torch.stack(prob)
[45](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:45) pred = prob[prob>=self.threshold]
File /workspace/SuperPoint/models/magicpoint.py:39, in <listcomp>(.0)
[37](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:37) prob = output['prob']
[38](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:38) if self.nms is not None:
---> [39](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:39) prob = [box_nms(p.unsqueeze(dim=0),
[40](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:40) self.nms,
[41](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:41) min_prob=self.threshold,
[42](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:42) keep_top_k=self.top_k).squeeze(dim=0) for p in prob]
[43](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:43) prob = torch.stack(prob)
[45](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/models/magicpoint.py:45) pred = prob[prob>=self.threshold]
File /workspace/SuperPoint/utils/nms.py:70, in box_nms(prob, size, iou, min_prob, keep_top_k)
[67](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/utils/nms.py:67) if boxes.nelement() == 0 or scores.nelement() == 0:
[68](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/utils/nms.py:68) print("Error: One of the tensors is empty")
---> [70](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/utils/nms.py:70) indices = torchvision.ops.nms(boxes=boxes, scores=scores, iou_threshold=iou)
[71](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/utils/nms.py:71) pts = pts[indices,:]
[72](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/workspace/SuperPoint/utils/nms.py:72) scores = scores[indices]
File /usr/local/lib/python3.8/dist-packages/torchvision/ops/boxes.py:41, in nms(boxes, scores, iou_threshold)
[39](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/usr/local/lib/python3.8/dist-packages/torchvision/ops/boxes.py:39) _log_api_usage_once(nms)
[40](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/usr/local/lib/python3.8/dist-packages/torchvision/ops/boxes.py:40) _assert_has_ops()
---> [41](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/usr/local/lib/python3.8/dist-packages/torchvision/ops/boxes.py:41) return torch.ops.torchvision.nms(boxes, scores, iou_threshold)
File /usr/local/lib/python3.8/dist-packages/torch/_ops.py:442, in OpOverloadPacket.__call__(self, *args, **kwargs)
[437](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/usr/local/lib/python3.8/dist-packages/torch/_ops.py:437) def __call__(self, *args, **kwargs):
[438](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/usr/local/lib/python3.8/dist-packages/torch/_ops.py:438) # overloading __call__ to ensure torch.ops.foo.bar()
[439](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/usr/local/lib/python3.8/dist-packages/torch/_ops.py:439) # is still callable from JIT
[440](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/usr/local/lib/python3.8/dist-packages/torch/_ops.py:440) # We save the function ptr as the `op` attribute on
[441](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/usr/local/lib/python3.8/dist-packages/torch/_ops.py:441) # OpOverloadPacket to access it here.
--> [442](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f7375706572706f696e74227d-0040ssh-002dremote-002b10-002e64-002e60-002e182.vscode-resource.vscode-cdn.net/usr/local/lib/python3.8/dist-packages/torch/_ops.py:442) return self._op(*args, **kwargs or {})
RuntimeError: Trying to create tensor with negative dimension -1707356657: [-1707356657]
The text was updated successfully, but these errors were encountered:
Hi,
Thank you so much for this implementation. I was trying to train the magicpoint network in Linux, and I encountered this issue in NMS:
RuntimeError: Trying to create tensor with negative dimension -1459651072: [-1459651072]
On investigating, I see that the boxes have negative values. How do I correct this?
The text was updated successfully, but these errors were encountered: