-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcfgblock.py
273 lines (203 loc) · 8.08 KB
/
cfgblock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from enum import Enum
from termcolor import colored
from customvector import CustomVector
class Terminator:
"""
Represents a CFGBlock terminator statement
"""
class CFGBlock:
class AdjacentBlock:
"""This class represents a potential adjacent block in the CFG.
It encodes whether or ont the block is actually reachable, or
can be proved to be tribially unreachable. For some cases it
allows one to encode scenarios where a block was substituted
because the original (now alternate) block is unreachable."""
class Kind(Enum):
AB_Normal = 0
AB_Unreachable = 1
AB_Alternate = 2
def __init__(self, CFGBlock, isReachable=None, alternateBlock=None):
self._reachableBlock = None
self._unreachableBlock = [None, None]
if isReachable and not(alternateBlock):
self.reachable(CFGBlock, isReachable)
elif not(isReachable) and alternateBlock:
self.alternate(CFGBlock, alternateBlock)
def reachable(self, block, isReachable):
if isReachable:
self._reachableBlock = block
else:
self._reachableBlock = None
# Inicialization of _unreachableBlock
if not isReachable:
self._unreachableBlock[0] = block
else:
self._unreachableBlock[0] = None
if block and isReachable:
self._unreachableBlock[1] = self.Kind.AB_Normal
else:
self._unreachableBlock[1] = self.Kind.AB_Unreachable
def alternate(self, block, alternateBlock):
self._reachableBlock = block
if block == alternateBlock:
self._unreachableBlock[0] = None
self._unreachableBlock[1] = self.Kind.AB_Alternate
else:
self._unreachableBlock[0] = alternateBlock
self._unreachableBlock[1] = self.Kind.AB_Normal
def getReachableBlock(self):
"""Get the reachable block if one exists."""
return self._reachableBlock
def getPossiblyUnreachableBlock(self):
"""Get potentially unreachable block."""
return self._unreachableBlock
def isReachable(self):
kind = self._unreachableBlock[1]
return kind is self.Kind.AB_Normal or kind is self.Kind.AB_Alternate
def __init__(self, blockID, C, CFGparent):
# Set of statements in the basic block, list of CFGElement
self._elements = C
# TODO: label = stmt()
self._label = None
# The terminator for a basic block that indicates the type of control-flow
# that accours between a bloack and its successors.
self._terminator = None
# LoopTarget- some blocks are used to represent the "loop edge" to the start
# of a loop from within the loop body. This stmt will be refer to the loop stmt
# for such blocks (and be null otherwise)
self._loopTarget = None
self._blockID = blockID
# Predecessors/Sucessors - Keep track of the predecessor / sucessor CFG Blocks
self._preds = CustomVector()
self._succs = CustomVector()
# This shit makes no sense
# self._preds.push_back(C)
# self._succs.push_back(C)
# NoReturn - this bit is set when basic block contains a function call
# that is attributed as 'noreturn'. In that case, control cannot technically
# ever proceed past this block. All such blocks will have a immediate successor:
# the exit block. This allows them to be easily reached from the exit block and
# using this bit quickly recognized without scanning the contents of the block
self._hasNoReturnElement = False
# Parent CFG that owns the CFGBlock
self._parent = CFGparent
# Control do stmt
self._doBodyBlock = False
def front(self):
return self._elements.front()
def back(self):
return self._elements.back()
def begin(self):
return self._elements.begin()
def rbegin(self):
return self._elements.rbegin()
def size(self):
return self._elements.size()
def empty(self):
return self._elements.empty()
def removeElement(self, index):
self._elements.popAtIndex(index)
# CFG ITERATORS
def pred_begin(self):
return self._preds.begin()
def preds_rbegin(self):
return self._preds.rbegin()
def succs_begin(self):
return self._succs.begin()
def succs_rbegin(self):
return self._succs.rbegin()
def succs_size(self):
return self._succs.size()
def succs_empty(self):
return self._succs.empty()
def preds_size(self):
return self._preds.size()
def preds_empty(self):
return self._preds.empty()
def removeSucc(self, index):
return self._succs.popAtIndex(index)
def removeAllSuccs(self):
for s in range(self._succs.size()):
self._succs.pop_back()
def removePred(self, index):
return self._preds.popAtIndex(index)
# MANIPULATION OF BLOCK CONTENTS
def setTerminator(self, term):
self._terminator = term
def setLabel(self, statement):
self._label = statement
def setDoBodyBlock(self):
self._doBodyBlock = True
def isDoBodyBlock(self):
return self._doBodyBlock
def setLoopTarget(self, stmtLoopTarjet):
self._loopTarget = stmtLoopTarjet
def setHasNoReturnElement(self):
self._hasNoReturnElement = True
def getTerminator(self):
return self._terminator
def getLoopTarjet(self):
return self._loopTarget
def getLabel(self):
return self._label
def hasNoReturnElement(self):
return self._hasNoReturnElement
def getBlockID(self):
return self._blockID
def getParent(self):
return self._parent
# TODO: METODOS DE SALIDA POR PANTALLA
def print_preds(self):
l = CustomVector()
for e in self._preds.begin():
l.push_back(e.getReachableBlock().getBlockID())
l.printer()
def print_succs(self):
l = CustomVector()
for e in self._succs.begin():
l.push_back(e.getReachableBlock().getBlockID())
l.printer()
def printer(self):
""" Pretty-print a block
:return: String
"""
output = ""
# Printing the block ID
output += colored("[B" + str(self._blockID) + "]\n", "red")
# Printing the statements
i = 0
for e in self._elements.rbegin():
output += str(i) + ": " + e.printer() + "\n"
i += 1
# Printing predecessors
for e in self._preds.begin():
if(e.getReachableBlock() is not None):
output += colored("Preds " + "(" + str(self._preds.size()) + ")" +
": " + "B" + str(e.getReachableBlock().getBlockID()) + "\n", "cyan")
# Printing predecessors
for e in self._succs.begin():
if(e.getReachableBlock() is not None):
output += colored("Succs " + "(" + str(self._succs.size()) + ")" +
": " + "B" + str(e.getReachableBlock().getBlockID()) + "\n", "magenta")
output += "\n"
return output
def addSuccessor(self, succ):
"""Adds a (potentially unreachable) sucessor block to the current block.
Parameters
----------
succ : :obj:`AdjacentBlock`
"""
# The block is reachable
B = succ.getReachableBlock()
if B:
B._preds.push_back(self.AdjacentBlock(
self, isReachable=succ.isReachable()))
# The block is unreachable
unreachableB = succ.getPossiblyUnreachableBlock()
if unreachableB[0]:
unreachableB[0]._preds.push_back(
self.AdjacentBlock(self, isReachable=False))
# Adding the block as a sucessor
self._succs.push_back(succ)
def appendStmt(self, stmt):
self._elements.push_back(stmt)