-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearchindex.js
1 lines (1 loc) · 356 KB
/
searchindex.js
1
Search.setIndex({"alltitles": {"(\u2026)": [[271, "id1"]], "- Data Preparation": [[289, "data-preparation"]], "- Model Initialization": [[289, "model-initialization"]], "- Training Loop": [[289, "training-loop"]], "- Validation Steps": [[289, "validation-steps"]], "1. Accuracy": [[274, "accuracy"], [287, "accuracy"]], "1. Basic Setup": [[274, "basic-setup"], [287, "basic-setup"]], "1. Binary Classification": [[274, "binary-classification"], [287, "binary-classification"]], "1. Continuous vs Discrete Outputs": [[274, "continuous-vs-discrete-outputs"], [287, "continuous-vs-discrete-outputs"]], "1. Correlation Heatmaps": [[273, "correlation-heatmaps"], [286, "correlation-heatmaps"]], "1. Data Loading & Preprocessing": [[282, "data-loading-preprocessing"]], "1. Data Preparation": [[276, "data-preparation"]], "1. Deletion Methods": [[273, "deletion-methods"], [286, "deletion-methods"]], "1. Easy to Understand": [[274, "easy-to-understand"], [287, "easy-to-understand"]], "1. Feature Importance": [[274, "feature-importance"], [287, "feature-importance"]], "1. Feature Selection": [[274, "feature-selection"], [287, "feature-selection"]], "1. Filter Methods": [[273, "filter-methods"], [286, "filter-methods"]], "1. Histograms": [[273, "histograms"], [286, "histograms"]], "1. How do I know this is the right course for me to do?": [[271, "how-do-i-know-this-is-the-right-course-for-me-to-do"]], "1. Identifying Duplicates": [[273, "identifying-duplicates"], [286, "identifying-duplicates"]], "1. Information Flow": [[289, "information-flow"]], "1. Input Processing": [[289, "input-processing"], [289, "id6"]], "1. Learning Rate": [[274, "learning-rate"], [287, "learning-rate"]], "1. Mean Squared Error (MSE)": [[274, "mean-squared-error-mse"], [287, "mean-squared-error-mse"]], "1. Mean, Median, and Mode": [[273, "mean-median-and-mode"], [286, "mean-median-and-mode"]], "1. Min-Max Scaling": [[273, "min-max-scaling"], [286, "min-max-scaling"]], "1. Multiple Trees": [[274, "multiple-trees"], [287, "multiple-trees"]], "1. NumPy Arrays": [[273, "numpy-arrays"], [286, "numpy-arrays"]], "1. Numerical Data": [[273, "numerical-data"], [286, "numerical-data"]], "1. One-Hot Encoding": [[273, "one-hot-encoding"], [286, "one-hot-encoding"]], "1. Parameter Tuning": [[274, "parameter-tuning"], [287, "parameter-tuning"]], "1. Predicting Categories vs Numbers": [[274, "predicting-categories-vs-numbers"], [287, "predicting-categories-vs-numbers"]], "1. Removing Duplicates": [[273, "removing-duplicates"], [286, "removing-duplicates"]], "1. Root Node": [[274, "root-node"], [287, "root-node"]], "1. Scaling Order in Pipeline": [[273, "scaling-order-in-pipeline"], [286, "scaling-order-in-pipeline"]], "1. Sequential Learning": [[274, "sequential-learning"], [287, "sequential-learning"]], "1. Simple Example": [[274, "simple-example"], [287, "simple-example"]], "1. Simple Line Fitting": [[274, "simple-line-fitting"], [287, "simple-line-fitting"]], "1. Single-Layer Neural Network": [[289, "single-layer-neural-network"]], "1. Slope and Intercept": [[274, "slope-and-intercept"], [287, "slope-and-intercept"]], "1. Spam Detection": [[274, "spam-detection"], [287, "spam-detection"]], "1. Statistical Methods": [[273, "statistical-methods"], [286, "statistical-methods"]], "1. Tensor Shape": [[276, "tensor-shape"]], "1. Threshold Values": [[274, "threshold-values"], [287, "threshold-values"]], "1. Train-Test Split": [[274, "train-test-split"], [287, "train-test-split"]], "1. Types of Missing Data": [[273, "types-of-missing-data"], [286, "types-of-missing-data"]], "2 types of Machine Learning Models:": [[272, "types-of-machine-learning-models"], [285, "types-of-machine-learning-models"]], "2. Binary vs Multi-class Classification": [[274, "binary-vs-multi-class-classification"], [287, "binary-vs-multi-class-classification"]], "2. Box Plots": [[273, "box-plots"], [286, "box-plots"]], "2. Categorical Data": [[273, "categorical-data"], [286, "categorical-data"]], "2. Correlation Analysis": [[273, "id2"], [286, "id2"]], "2. Cross-validation": [[274, "cross-validation"], [287, "cross-validation"]], "2. Decision Nodes": [[274, "decision-nodes"], [287, "decision-nodes"]], "2. Detecting Outliers": [[273, "detecting-outliers"], [286, "detecting-outliers"]], "2. Error Distribution": [[289, "error-distribution"]], "2. Feature Rankings": [[273, "feature-rankings"], [286, "feature-rankings"]], "2. Features and Targets": [[274, "features-and-targets"], [287, "features-and-targets"]], "2. Forest Size": [[274, "forest-size"], [287, "forest-size"]], "2. Handling Inconsistent Values": [[273, "handling-inconsistent-values"], [286, "handling-inconsistent-values"]], "2. Here is how this course is structured and intended to be used.": [[271, "here-is-how-this-course-is-structured-and-intended-to-be-used"]], "2. House Price Example": [[274, "house-price-example"], [287, "house-price-example"]], "2. Label Encoding": [[273, "label-encoding"], [286, "label-encoding"]], "2. Layer Calculations": [[289, "layer-calculations"]], "2. Medical Diagnosis": [[274, "medical-diagnosis"], [287, "medical-diagnosis"]], "2. Missing Patterns": [[273, "missing-patterns"], [286, "missing-patterns"]], "2. Model Architecture": [[276, "model-architecture"], [282, "model-architecture"]], "2. Multi-Layer Neural Network": [[289, "multi-layer-neural-network"]], "2. Multiple Features": [[274, "multiple-features"], [287, "multiple-features"]], "2. Out-of-bag Error": [[274, "out-of-bag-error"], [287, "out-of-bag-error"]], "2. Output Range": [[289, "output-range"]], "2. Overfitting Risk": [[274, "overfitting-risk"], [287, "overfitting-risk"]], "2. Pair Plots": [[273, "pair-plots"], [286, "pair-plots"]], "2. Pandas DataFrames & Series": [[273, "pandas-dataframes-series"], [286, "pandas-dataframes-series"]], "2. Parameter Selection": [[274, "parameter-selection"], [287, "parameter-selection"]], "2. Precision": [[274, "precision"], [287, "precision"]], "2. Probability Interpretation": [[274, "probability-interpretation"], [287, "probability-interpretation"]], "2. Probability Output": [[274, "probability-output"], [287, "probability-output"]], "2. R-squared (R\u00b2)": [[274, "r-squared-r2"], [287, "r-squared-r2"]], "2. Real-world Examples": [[274, "real-world-examples"], [287, "real-world-examples"]], "2. Simple Imputation": [[273, "simple-imputation"], [286, "simple-imputation"]], "2. Split Criteria": [[274, "split-criteria"], [287, "split-criteria"]], "2. Standard Deviation": [[273, "standard-deviation"], [286, "standard-deviation"]], "2. Standard Scaling (Z-score)": [[273, "standard-scaling-z-score"], [286, "standard-scaling-z-score"]], "2. Tensor Data Type": [[276, "tensor-data-type"]], "2. Tree Depth": [[274, "tree-depth"], [287, "tree-depth"]], "2. Voting System": [[274, "voting-system"], [287, "voting-system"]], "2. Weak Learners": [[274, "weak-learners"], [287, "weak-learners"]], "2. Wrapper Methods": [[273, "wrapper-methods"], [286, "wrapper-methods"]], "3-Clause BSD License": [[33, "clause-bsd-license"], [78, "clause-bsd-license"], [124, "clause-bsd-license"], [169, "clause-bsd-license"], [214, "clause-bsd-license"], [259, "clause-bsd-license"]], "3. Assumptions": [[274, "assumptions"], [287, "assumptions"]], "3. Bagging Process": [[274, "bagging-process"], [287, "bagging-process"]], "3. Binary Data": [[273, "binary-data"], [286, "binary-data"]], "3. Binary Output": [[274, "binary-output"], [287, "binary-output"]], "3. Binning Numerical Data": [[273, "binning-numerical-data"], [286, "binning-numerical-data"]], "3. Checking Data Balance": [[273, "checking-data-balance"], [286, "checking-data-balance"]], "3. Common Pitfalls": [[274, "common-pitfalls"], [287, "common-pitfalls"]], "3. Computational Efficiency": [[289, "computational-efficiency"]], "3. Credit Approval": [[274, "credit-approval"], [287, "credit-approval"]], "3. Deep Neural Networks (DNNs)": [[289, "deep-neural-networks-dnns"]], "3. Distribution Plots": [[273, "distribution-plots"], [286, "distribution-plots"]], "3. Domain Knowledge": [[273, "domain-knowledge"], [286, "domain-knowledge"]], "3. Embedded Methods": [[273, "embedded-methods"], [286, "embedded-methods"]], "3. Equation Form": [[274, "equation-form"], [287, "equation-form"]], "3. Feature Selection": [[274, "id1"], [287, "id1"]], "3. Forward Pass": [[276, "forward-pass"]], "3. Gradient Boosting": [[274, "gradient-boosting"], [287, "gradient-boosting"]], "3. Holdout Sets": [[274, "holdout-sets"], [287, "holdout-sets"]], "3. Impact Assessment": [[273, "impact-assessment"], [286, "impact-assessment"]], "3. Information Gain": [[273, "information-gain"], [286, "information-gain"]], "3. Leaf Nodes": [[274, "leaf-nodes"], [287, "leaf-nodes"]], "3. Mean Absolute Error (MAE)": [[274, "mean-absolute-error-mae"], [287, "mean-absolute-error-mae"]], "3. Model Training": [[274, "model-training"], [287, "model-training"]], "3. Number of Trees": [[274, "number-of-trees"], [287, "number-of-trees"]], "3. Parallel Trees": [[274, "parallel-trees"], [287, "parallel-trees"]], "3. Prediction Types": [[274, "prediction-types"], [287, "prediction-types"]], "3. Quartiles and IQR": [[273, "quartiles-and-iqr"], [286, "quartiles-and-iqr"]], "3. Recall": [[274, "recall"], [287, "recall"]], "3. Robust Scaling": [[273, "robust-scaling"], [286, "robust-scaling"]], "3. S-shaped Curve": [[274, "s-shaped-curve"], [287, "s-shaped-curve"]], "3. Scatter Plots": [[273, "scatter-plots"], [286, "scatter-plots"]], "3. Signal Flow": [[289, "signal-flow"]], "3. Statistical Imputation": [[273, "statistical-imputation"], [286, "statistical-imputation"]], "3. String Cleaning": [[273, "string-cleaning"], [286, "string-cleaning"]], "3. Tensor Device": [[276, "tensor-device"]], "3. Tensors": [[273, "tensors"], [286, "tensors"]], "3. Training Pipeline": [[282, "training-pipeline"]], "3. Tree Growth": [[274, "tree-growth"], [287, "tree-growth"]], "3. Weight Adjustment": [[289, "weight-adjustment"]], "3. When to Use": [[274, "when-to-use"], [287, "when-to-use"]], "3. When to Use Each": [[274, "when-to-use-each"], [287, "when-to-use-each"]], "4. Advanced Imputation": [[273, "advanced-imputation"], [286, "advanced-imputation"]], "4. Best Practices": [[289, "best-practices"]], "4. Common Architectures": [[289, "common-architectures"]], "4. Common ML Dataset Formats": [[273, "common-ml-dataset-formats"], [286, "common-ml-dataset-formats"]], "4. Correlation Analysis": [[273, "correlation-analysis"], [286, "correlation-analysis"]], "4. Customer Conversion": [[274, "customer-conversion"], [287, "customer-conversion"]], "4. Date/Time Formatting": [[273, "date-time-formatting"], [286, "date-time-formatting"]], "4. Decision Boundary": [[274, "decision-boundary"], [287, "decision-boundary"]], "4. Dimensionality Reduction": [[273, "dimensionality-reduction"], [286, "dimensionality-reduction"]], "4. Error Correction": [[274, "error-correction"], [287, "error-correction"]], "4. F1-Score": [[274, "f1-score"], [287, "f1-score"]], "4. Feature Impact": [[274, "feature-impact"], [287, "feature-impact"]], "4. Finding Data Anomalies": [[273, "finding-data-anomalies"], [286, "finding-data-anomalies"]], "4. Input vs Output Types": [[274, "input-vs-output-types"], [287, "input-vs-output-types"]], "4. Iterative Learning": [[289, "iterative-learning"]], "4. Limitations": [[274, "limitations"], [287, "limitations"]], "4. Line Plots": [[273, "line-plots"], [286, "line-plots"]], "4. Line of Best Fit": [[274, "line-of-best-fit"]], "4. Log Transformation": [[273, "log-transformation"], [286, "log-transformation"]], "4. Loss Calculation and Backpropagation": [[276, "loss-calculation-and-backpropagation"]], "4. Majority Voting": [[274, "majority-voting"], [287, "majority-voting"]], "4. Making Predictions": [[274, "making-predictions"], [287, "making-predictions"]], "4. Normalization": [[273, "normalization"], [286, "normalization"]], "4. Output Generation": [[289, "output-generation"]], "4. Performance Tips": [[274, "performance-tips"], [287, "performance-tips"]], "4. Pruning Basics": [[274, "pruning-basics"], [287, "pruning-basics"]], "4. Random Selection": [[274, "random-selection"], [287, "random-selection"]], "4. Real Applications": [[274, "real-applications"], [287, "real-applications"]], "4. Real Examples": [[274, "real-examples"], [287, "real-examples"]], "4. Regularization": [[274, "regularization"], [287, "regularization"]], "4. Root Mean Squared Error (RMSE)": [[274, "root-mean-squared-error-rmse"], [287, "root-mean-squared-error-rmse"]], "4. Splitting Rules": [[274, "splitting-rules"], [287, "splitting-rules"]], "4. Time Series Data": [[273, "time-series-data"], [286, "time-series-data"]], "4. Time Series Plots": [[273, "time-series-plots"], [286, "time-series-plots"]], "4. Validation Curves": [[274, "validation-curves"], [287, "validation-curves"]], "4. Visualization & Interpretation": [[282, "visualization-interpretation"]], "5. Accessing Gradients": [[276, "accessing-gradients"]], "5. Bar Charts": [[273, "bar-charts"], [286, "bar-charts"]], "5. Confusion Matrix": [[274, "confusion-matrix"], [287, "confusion-matrix"]], "5. Distribution Analysis": [[273, "distribution-analysis"], [286, "distribution-analysis"]], "5. Feature Engineering Basics": [[273, "feature-engineering-basics"], [286, "feature-engineering-basics"]], "5. Fixing Data Types": [[273, "fixing-data-types"], [286, "fixing-data-types"]], "5. Interactive Visualizations": [[273, "interactive-visualizations"], [286, "interactive-visualizations"]], "5. Model Evaluation": [[282, "model-evaluation"]], "5. Power Transformation": [[273, "power-transformation"], [286, "power-transformation"]], "5. Text Data": [[273, "text-data"], [286, "text-data"]], "5. Verifying Data Types": [[273, "verifying-data-types"], [286, "verifying-data-types"]], "A guide to masked arrays in NumPy": [[32, null], [77, null], [123, null], [168, null], [213, null], [258, null]], "A11Y Dark": [[2, null], [47, null], [93, null], [138, null], [183, null], [228, null]], "A11Y High Contrast Dark": [[3, null], [48, null], [94, null], [139, null], [184, null], [229, null]], "A11Y High Contrast Light": [[4, null], [49, null], [95, null], [140, null], [185, null], [230, null]], "A11Y Light": [[5, null], [50, null], [96, null], [141, null], [186, null], [231, null]], "API": [[29, "api"], [74, "api"], [120, "api"], [165, "api"], [210, "api"], [255, "api"]], "About This Course": [[90, "about-this-course"]], "Accessing the model parameters": [[276, "accessing-the-model-parameters"]], "Activation Functions": [[276, "activation-functions"], [289, "activation-functions"], [289, "id4"], [289, "id5"], [290, "activation-functions"]], "AdaGrad": [[289, "adagrad"]], "Adam": [[289, "adam"]], "Additional things to add.": [[271, "additional-things-to-add"]], "Advanced Applications": [[291, "advanced-applications"]], "Advanced Concepts": [[291, "advanced-concepts"], [291, "id9"]], "Advanced Optimizers": [[289, "advanced-optimizers"]], "Advanced Techniques": [[292, "advanced-techniques"], [292, "id19"]], "Advanced Visualization": [[273, "advanced-visualization"], [286, "advanced-visualization"]], "Advantages/Disadvantages": [[289, "advantages-disadvantages"]], "Advantages/Limitations": [[274, "advantages-limitations"], [287, "advantages-limitations"]], "Algorithm Selection": [[288, "algorithm-selection"]], "An Analogy for Backpropagation": [[276, "an-analogy-for-backpropagation"]], "An Analogy for Forward Propagation": [[276, "an-analogy-for-forward-propagation"]], "An example cell": [[25, "an-example-cell"], [70, "an-example-cell"], [116, "an-example-cell"], [161, "an-example-cell"], [206, "an-example-cell"], [251, "an-example-cell"]], "Anomaly Detection": [[288, "anomaly-detection"]], "Applications": [[274, "applications"], [287, "applications"]], "Apriori Algorithm": [[288, "apriori-algorithm"]], "Artificial Neural Networks": [[289, "artificial-neural-networks"]], "Artificial Neural Networks (ANNs)": [[289, "artificial-neural-networks-anns"]], "Association Rules": [[288, "association-rules"]], "Attention Mechanisms": [[293, "attention-mechanisms"]], "Authors": [[34, null], [36, null], [79, null], [81, null], [125, null], [127, null], [170, null], [172, null], [215, null], [217, null], [260, null], [262, null]], "Backward Compatibility": [[1, "backward-compatibility"], [46, "backward-compatibility"], [92, "backward-compatibility"], [137, "backward-compatibility"], [182, "backward-compatibility"], [227, "backward-compatibility"]], "Backward Propagation": [[289, "backward-propagation"]], "Basic Architecture": [[293, "basic-architecture"]], "Basic Classification": [[292, "basic-classification"], [292, "id18"]], "Basic Components": [[291, "basic-components"], [291, "id7"]], "Basic Concepts": [[288, "basic-concepts"]], "Basic Data Types": [[273, "basic-data-types"], [286, "basic-data-types"]], "Basic Operations": [[290, "basic-operations"], [290, "id2"]], "Basic Optimizers": [[289, "basic-optimizers"]], "Basic Plots": [[273, "basic-plots"], [286, "basic-plots"]], "Basic RNN Structure": [[292, "basic-rnn-structure"], [292, "id7"]], "Basic Training Concepts": [[289, "basic-training-concepts"]], "Basics": [[274, "basics"], [287, "basics"]], "Batch Processing": [[290, "batch-processing"]], "Batch Size": [[289, "batch-size"]], "Below is an example of Backpropagation": [[276, "below-is-an-example-of-backpropagation"]], "Best Practices": [[273, "best-practices"], [273, "id3"], [286, "best-practices"], [286, "id3"], [288, "best-practices"], [290, "best-practices"], [291, "best-practices"], [291, "id18"], [293, "best-practices"]], "Better Alternatives": [[276, "better-alternatives"]], "Binary Classification: Forward Propagation": [[276, "binary-classification-forward-propagation"]], "Biplot Understanding": [[288, "biplot-understanding"]], "Blinds Dark": [[6, null], [51, null], [97, null], [142, null], [187, null], [232, null]], "Blinds Light": [[7, null], [52, null], [98, null], [143, null], [188, null], [233, null]], "Boosting Concepts": [[274, "boosting-concepts"], [287, "boosting-concepts"]], "Border Points": [[288, "border-points"]], "Bottom-up vs Top-down": [[288, "bottom-up-vs-top-down"]], "Bounding Boxes": [[291, "bounding-boxes"]], "Building Neural Networks": [[290, "building-neural-networks"], [290, "id5"]], "Building a binary classifier in PyTorch": [[276, "building-a-binary-classifier-in-pytorch"]], "CDN": [[31, "cdn"], [76, "cdn"], [122, "cdn"], [167, "cdn"], [212, "cdn"], [257, "cdn"]], "CHANGELOG": [[31, "changelog"], [76, "changelog"], [122, "changelog"], [167, "changelog"], [212, "changelog"], [257, "changelog"]], "CNN Architecture": [[291, "cnn-architecture"], [291, "id6"]], "Calculating accuracy using torchmetrics": [[276, "calculating-accuracy-using-torchmetrics"]], "Calculating cross entropy loss": [[276, "calculating-cross-entropy-loss"]], "Centroid Concept": [[288, "centroid-concept"]], "Chain Rule": [[289, "chain-rule"]], "Chapter 1: Introduction to Machine Learning": [[272, null], [285, null]], "Chapter 2 - Data Fundamentals": [[273, null], [286, null]], "Chapter 3 - Supervised Learning": [[274, null], [287, null]], "Chapter 4 - Unsupervised Learning": [[275, null], [288, null]], "Chapter 5 - Neural Networks Basics": [[276, null], [289, null]], "Chapter 5: Neural Networks Basics": [[289, "id3"]], "Chapter 6 - Deep Learning Tools": [[277, null], [290, null]], "Chapter 6: Deep Learning Tools": [[290, "id3"]], "Chapter 7 - Convolutional Neural Networks": [[278, null], [291, null]], "Chapter 7: Convolutional Neural Networks": [[291, "id1"]], "Chapter 8 - Sequential Data and RNNs": [[279, null], [292, null]], "Chapter 8: Sequential Data and RNNs": [[292, "id1"]], "Chapter 9 - Modern Deep Learning": [[280, null], [293, null]], "Choosing Advanced Plots": [[273, "choosing-advanced-plots"], [286, "choosing-advanced-plots"]], "Choosing K Value": [[288, "choosing-k-value"]], "Choosing the Right Optimizer": [[276, "choosing-the-right-optimizer"]], "Choosing the Right Plot": [[273, "choosing-the-right-plot"], [286, "choosing-the-right-plot"]], "Citations": [[24, "citations"], [69, "citations"], [115, "citations"], [160, "citations"], [205, "citations"], [250, "citations"]], "Classification (Discrete Output)": [[276, "classification-discrete-output"]], "Classification Loss Functions": [[276, "classification-loss-functions"]], "Classification Metrics": [[274, "classification-metrics"], [287, "classification-metrics"]], "Classification vs Regression": [[274, "classification-vs-regression"], [287, "classification-vs-regression"]], "Classification vs Regression Problems in Deep Learning": [[276, "classification-vs-regression-problems-in-deep-learning"]], "Clustering Algorithms": [[288, "clustering-algorithms"]], "Code Breakdown": [[276, "code-breakdown"]], "Code blocks and outputs": [[26, "code-blocks-and-outputs"], [71, "code-blocks-and-outputs"], [117, "code-blocks-and-outputs"], [162, "code-blocks-and-outputs"], [207, "code-blocks-and-outputs"], [252, "code-blocks-and-outputs"]], "Code example of Freezing layers of a model": [[276, "code-example-of-freezing-layers-of-a-model"]], "Color Depth": [[291, "color-depth"]], "Colors": [[2, "colors"], [3, "colors"], [4, "colors"], [5, "colors"], [6, "colors"], [7, "colors"], [8, "colors"], [9, "colors"], [10, "colors"], [11, "colors"], [12, "colors"], [13, "colors"], [14, "colors"], [15, "colors"], [16, "colors"], [17, "colors"], [47, "colors"], [48, "colors"], [49, "colors"], [50, "colors"], [51, "colors"], [52, "colors"], [53, "colors"], [54, "colors"], [55, "colors"], [56, "colors"], [57, "colors"], [58, "colors"], [59, "colors"], [60, "colors"], [61, "colors"], [62, "colors"], [93, "colors"], [94, "colors"], [95, "colors"], [96, "colors"], [97, "colors"], [98, "colors"], [99, "colors"], [100, "colors"], [101, "colors"], [102, "colors"], [103, "colors"], [104, "colors"], [105, "colors"], [106, "colors"], [107, "colors"], [108, "colors"], [138, "colors"], [139, "colors"], [140, "colors"], [141, "colors"], [142, "colors"], [143, "colors"], [144, "colors"], [145, "colors"], [146, "colors"], [147, "colors"], [148, "colors"], [149, "colors"], [150, "colors"], [151, "colors"], [152, "colors"], [153, "colors"], [183, "colors"], [184, "colors"], [185, "colors"], [186, "colors"], [187, "colors"], [188, "colors"], [189, "colors"], [190, "colors"], [191, "colors"], [192, "colors"], [193, "colors"], [194, "colors"], [195, "colors"], [196, "colors"], [197, "colors"], [198, "colors"], [228, "colors"], [229, "colors"], [230, "colors"], [231, "colors"], [232, "colors"], [233, "colors"], [234, "colors"], [235, "colors"], [236, "colors"], [237, "colors"], [238, "colors"], [239, "colors"], [240, "colors"], [241, "colors"], [242, "colors"], [243, "colors"]], "Command to build the book": [[271, "command-to-build-the-book"]], "Common Challenges": [[289, "common-challenges"]], "Common Functions": [[289, "common-functions"]], "Common Momentum Values and Their Effects": [[276, "common-momentum-values-and-their-effects"]], "Common Patterns": [[273, "common-patterns"], [286, "common-patterns"]], "Common Patterns to Watch": [[273, "common-patterns-to-watch"], [286, "common-patterns-to-watch"]], "Common Pitfalls": [[273, "common-pitfalls"], [286, "common-pitfalls"]], "Common Visualization Tips": [[273, "common-visualization-tips"], [286, "common-visualization-tips"]], "Comparing Architectures": [[292, "comparing-architectures"], [292, "id12"]], "Comparison with Other Frameworks": [[290, "comparison-with-other-frameworks"]], "Compiled translation files": [[42, "compiled-translation-files"], [87, "compiled-translation-files"], [133, "compiled-translation-files"], [178, "compiled-translation-files"], [223, "compiled-translation-files"], [268, "compiled-translation-files"]], "Component Calculation": [[288, "component-calculation"]], "Component Selection": [[288, "component-selection"]], "Components": [[33, "components"], [78, "components"], [124, "components"], [169, "components"], [214, "components"], [259, "components"], [274, "components"], [287, "components"]], "Computer Vision Applications": [[291, "computer-vision-applications"], [291, "id19"]], "Confidence": [[288, "confidence"]], "Content with notebooks": [[26, null], [71, null], [117, null], [162, null], [207, null], [252, null]], "Contents": [[32, "contents"], [77, "contents"], [123, "contents"], [168, "contents"], [213, "contents"], [258, "contents"]], "Contributing": [[90, "contributing"]], "Contributing \ud83e\udd1d": [[271, "contributing"]], "Contributors": [[34, "contributors"], [79, "contributors"], [125, "contributors"], [170, "contributors"], [215, "contributors"], [260, "contributors"]], "Convergence = Finding the Treasure": [[276, "convergence-finding-the-treasure"]], "Convergence Issues": [[289, "convergence-issues"]], "Core Concepts": [[274, "core-concepts"], [287, "core-concepts"], [288, "core-concepts"], [293, "core-concepts"]], "Core Points": [[288, "core-points"]], "Course Content \ud83d\udcd6 (Needs to be updated once the notebooks are finished)": [[271, "course-content-needs-to-be-updated-once-the-notebooks-are-finished"]], "Course Structure": [[90, "course-structure"]], "Covariance Matrix": [[288, "covariance-matrix"]], "Create a notebook with MyST Markdown": [[25, "create-a-notebook-with-myst-markdown"], [70, "create-a-notebook-with-myst-markdown"], [116, "create-a-notebook-with-myst-markdown"], [161, "create-a-notebook-with-myst-markdown"], [206, "create-a-notebook-with-myst-markdown"], [251, "create-a-notebook-with-myst-markdown"]], "Creating Tensors": [[290, "creating-tensors"]], "Creating one-hot encoded labels": [[276, "creating-one-hot-encoded-labels"]], "Creating our own Neural Network": [[276, "creating-our-own-neural-network"]], "Creator": [[34, "creator"], [79, "creator"], [125, "creator"], [170, "creator"], [215, "creator"], [260, "creator"]], "Curse of Dimensionality": [[288, "curse-of-dimensionality"]], "Custom Networks": [[290, "custom-networks"]], "Customer Segmentation": [[288, "customer-segmentation"]], "DBSCAN": [[288, "dbscan"]], "DBSCAN Essentials": [[288, "dbscan-essentials"]], "Data Augmentation: The \u201cStudy Buddy\u201d Method": [[276, "data-augmentation-the-study-buddy-method"]], "Data Cleaning": [[273, "data-cleaning"], [286, "data-cleaning"]], "Data Compression": [[288, "data-compression"]], "Data Loading": [[290, "data-loading"]], "Data Preparation": [[292, "data-preparation"], [292, "id4"]], "Data Preprocessing": [[273, "data-preprocessing"], [286, "data-preprocessing"]], "Data Quality Checks": [[273, "data-quality-checks"], [286, "data-quality-checks"]], "Data Standardization": [[288, "data-standardization"]], "Data Structures in Python": [[273, "data-structures-in-python"], [286, "data-structures-in-python"]], "Data Transfer": [[290, "data-transfer"]], "Data Transformation": [[273, "data-transformation"], [286, "data-transformation"]], "Data Types": [[290, "data-types"]], "Data Types and Structures": [[273, "data-types-and-structures"], [286, "data-types-and-structures"]], "Data Visualization": [[273, "data-visualization"], [286, "data-visualization"]], "Dataset": [[282, "dataset"]], "Debugging Strategies": [[290, "debugging-strategies"]], "Decision Trees": [[274, "decision-trees"], [287, "decision-trees"]], "Deep Learning Journey": [[271, "deep-learning-journey"]], "DeepSceneNet: Vision Transformer for Environmental Scene Understanding": [[282, null]], "Deliverables": [[282, "deliverables"]], "Dendrogram Understanding": [[288, "dendrogram-understanding"]], "Density-Based Clustering": [[288, "density-based-clustering"]], "Dependencies": [[31, "dependencies"], [76, "dependencies"], [122, "dependencies"], [167, "dependencies"], [212, "dependencies"], [257, "dependencies"]], "Deployment Options": [[293, "deployment-options"]], "Deployment Preparation": [[293, "deployment-preparation"]], "Detection Networks": [[291, "detection-networks"]], "Development Environment": [[290, "development-environment"]], "Device Management (CPU/GPU)": [[290, "device-management-cpu-gpu"]], "Dimensionality": [[291, "dimensionality"], [291, "id14"]], "Dimensionality Reduction": [[288, "dimensionality-reduction"]], "Dimensionality Selection": [[288, "dimensionality-selection"]], "Distance Metrics": [[288, "distance-metrics"]], "Document Clustering": [[288, "document-clustering"]], "Documentation": [[273, "documentation"], [284, "documentation"], [286, "documentation"], [294, "documentation"]], "Dropout": [[289, "dropout"]], "Dropout: The \u201cPop Quiz\u201d Method": [[276, "dropout-the-pop-quiz-method"]], "Dynamic Computation Graphs": [[290, "dynamic-computation-graphs"]], "Each nn.Linear line of code is a Linear Layer": [[276, "each-nn-linear-line-of-code-is-a-linear-layer"]], "Early Stopping": [[289, "early-stopping"]], "Edge Recognition": [[291, "edge-recognition"]], "Eigenvalues": [[288, "eigenvalues"]], "Eigenvectors": [[288, "eigenvectors"]], "Elbow Method": [[288, "elbow-method"]], "Ensemble Basics": [[274, "ensemble-basics"], [287, "ensemble-basics"]], "Epoch": [[276, "epoch"]], "Epochs": [[289, "epochs"]], "Error Calculation": [[289, "error-calculation"]], "Estimating a sample": [[276, "estimating-a-sample"]], "Ethical Considerations": [[293, "ethical-considerations"]], "Evaluation Methods": [[288, "evaluation-methods"], [290, "evaluation-methods"]], "Evaluation Metrics": [[282, "evaluation-metrics"]], "Example": [[29, "example"], [74, "example"], [120, "example"], [165, "example"], [210, "example"], [255, "example"]], "Exercise": [[276, "exercise"], [276, "id4"], [276, "id6"], [276, "id7"], [276, "id8"], [276, "id11"], [276, "id13"], [276, "id16"], [276, "id19"], [276, "id21"], [276, "id24"], [276, "id27"], [276, "id29"], [276, "id33"], [276, "id36"], [276, "id39"], [276, "id42"]], "Exercise #1": [[276, "exercise-1"]], "Exercise 1.6": [[276, "exercise-1-6"]], "Exercise 2.1": [[276, "exercise-2-1"]], "Exercise 2.2": [[276, "exercise-2-2"]], "Exercise 2.3": [[276, "exercise-2-3"]], "Exercise 2.4": [[276, "exercise-2-4"]], "Exercise: Classifying Machine Learning vs Deep Learning Problems": [[272, "exercise-classifying-machine-learning-vs-deep-learning-problems"], [285, "exercise-classifying-machine-learning-vs-deep-learning-problems"]], "Exercise: Distinguishing Between Supervised and Unsupervised Learning": [[272, "exercise-distinguishing-between-supervised-and-unsupervised-learning"], [285, "exercise-distinguishing-between-supervised-and-unsupervised-learning"]], "Exercise: Understanding Classification and Regression": [[287, "exercise-understanding-classification-and-regression"]], "Exercise: Understanding Data Types and Structures": [[273, "exercise-understanding-data-types-and-structures"], [286, "exercise-understanding-data-types-and-structures"]], "Exercise: Understanding Machine Learning Terminology": [[272, "exercise-understanding-machine-learning-terminology"], [285, "exercise-understanding-machine-learning-terminology"]], "Exercise: Understanding the ML Project Lifecycle": [[272, "exercise-understanding-the-ml-project-lifecycle"], [285, "exercise-understanding-the-ml-project-lifecycle"]], "Experimenting with dropout": [[276, "experimenting-with-dropout"]], "Experimenting with momentum": [[276, "experimenting-with-momentum"]], "Explanation for the code above": [[276, "explanation-for-the-code-above"]], "Exploratory Data Analysis": [[273, "exploratory-data-analysis"], [286, "exploratory-data-analysis"]], "FAQ": [[31, "faq"], [76, "faq"], [90, "faq"], [122, "faq"], [167, "faq"], [212, "faq"], [257, "faq"]], "Face Recognition": [[291, "face-recognition"]], "Feature Detection": [[291, "feature-detection"]], "Feature Extraction": [[288, "feature-extraction"]], "Feature Importance": [[273, "feature-importance"], [286, "feature-importance"]], "Feature Scaling": [[273, "feature-scaling"], [286, "feature-scaling"]], "Feature Selection": [[273, "feature-selection"], [286, "feature-selection"], [288, "feature-selection"]], "Feature Selection Methods Comparison": [[273, "feature-selection-methods-comparison"], [286, "feature-selection-methods-comparison"]], "Feature Space": [[288, "feature-space"]], "Features": [[31, "features"], [76, "features"], [122, "features"], [167, "features"], [212, "features"], [257, "features"]], "Feed-Forward Networks": [[289, "feed-forward-networks"]], "Feedback": [[90, "feedback"]], "Feeling the Ground = Calculating Gradients": [[276, "feeling-the-ground-calculating-gradients"]], "Fighting Overfitting": [[276, "fighting-overfitting"]], "Final Decision Station (Output Layer)": [[276, "final-decision-station-output-layer"]], "Finding the Right Balance": [[276, "finding-the-right-balance"]], "Fine-tuning": [[289, "fine-tuning"]], "Fine-tuning process": [[276, "fine-tuning-process"]], "First Part (Weight Gradients)": [[276, "first-part-weight-gradients"]], "Forward Propagation": [[289, "forward-propagation"]], "Forward Propagation and Backpropagation": [[276, "forward-propagation-and-backpropagation"]], "Forward/Backward Propagation": [[290, "forward-backward-propagation"]], "Frequent Patterns": [[288, "frequent-patterns"]], "From data loading to running a forward pass": [[276, "from-data-loading-to-running-a-forward-pass"]], "From regression to multi-class classification": [[276, "from-regression-to-multi-class-classification"]], "GPU Acceleration": [[290, "gpu-acceleration"], [290, "id7"]], "GPU Basics": [[290, "gpu-basics"]], "GRU Structure": [[292, "gru-structure"], [292, "id11"]], "Game Rules:": [[276, "game-rules"]], "Generative AI Basics": [[293, "generative-ai-basics"]], "Getting Help \ud83c\udd98": [[271, "getting-help"]], "Getting to know the linear layer operation": [[276, "getting-to-know-the-linear-layer-operation"]], "Github Dark": [[8, null], [53, null], [99, null], [144, null], [189, null], [234, null]], "Github Dark Colorblind": [[9, null], [54, null], [100, null], [145, null], [190, null], [235, null]], "Github Dark High Contrast": [[10, null], [55, null], [101, null], [146, null], [191, null], [236, null]], "Github Light": [[11, null], [56, null], [102, null], [147, null], [192, null], [237, null]], "Github Light Colorblind": [[12, null], [57, null], [103, null], [148, null], [193, null], [238, null]], "Github Light High Contrast": [[13, null], [58, null], [104, null], [149, null], [194, null], [239, null]], "Good Job! You\u2019ve completed the first chapter.": [[272, "good-job-you-ve-completed-the-first-chapter"], [285, "good-job-you-ve-completed-the-first-chapter"]], "Gotthard Dark": [[14, null], [59, null], [105, null], [150, null], [195, null], [240, null]], "Gotthard Light": [[15, null], [60, null], [106, null], [151, null], [196, null], [241, null]], "Gradient Computation": [[289, "gradient-computation"]], "Gradient Descent": [[289, "gradient-descent"]], "Gradient descent": [[276, "gradient-descent"]], "Greative": [[16, null], [61, null], [107, null], [152, null], [197, null], [242, null]], "Handling Binary Data": [[1, "handling-binary-data"], [46, "handling-binary-data"], [92, "handling-binary-data"], [137, "handling-binary-data"], [182, "handling-binary-data"], [227, "handling-binary-data"]], "Handling Missing Values": [[273, "handling-missing-values"], [286, "handling-missing-values"]], "Handling Missing Values Techniques": [[273, "handling-missing-values-techniques"], [286, "handling-missing-values-techniques"]], "Handling New Data": [[273, "handling-new-data"], [286, "handling-new-data"]], "Header Policy Control During Lifecycle": [[1, "header-policy-control-during-lifecycle"], [46, "header-policy-control-during-lifecycle"], [92, "header-policy-control-during-lifecycle"], [137, "header-policy-control-during-lifecycle"], [182, "header-policy-control-during-lifecycle"], [227, "header-policy-control-during-lifecycle"]], "Here is how to go about the course": [[271, "here-is-how-to-go-about-the-course"]], "Here\u2019s how it works:": [[276, "here-s-how-it-works"]], "Here\u2019s the code we\u2019ll analyze:": [[276, "here-s-the-code-we-ll-analyze"]], "Hidden Layers": [[289, "hidden-layers"]], "Hierarchical Clustering": [[288, "hierarchical-clustering"]], "Hierarchical Clustering Basics": [[288, "hierarchical-clustering-basics"]], "High Momentum (0.9 - 0.99)": [[276, "high-momentum-0-9-0-99"]], "High-Dimensional Data": [[288, "high-dimensional-data"]], "History": [[32, "history"], [77, "history"], [123, "history"], [168, "history"], [213, "history"], [258, "history"]], "How K-Means Works": [[288, "how-k-means-works"]], "How does Artifitial Intelligence, Machine Learning and Deep Learning relate to each other?": [[272, "how-does-artifitial-intelligence-machine-learning-and-deep-learning-relate-to-each-other"], [285, "how-does-artifitial-intelligence-machine-learning-and-deep-learning-relate-to-each-other"]], "How to Use Optimizers": [[276, "how-to-use-optimizers"]], "How to Use This Course \ud83c\udfaf": [[271, "how-to-use-this-course"]], "Hyperparameter Optimization": [[289, "hyperparameter-optimization"]], "Ignore the code block below, it is just for visualization": [[276, "ignore-the-code-block-below-it-is-just-for-visualization"]], "Image Classification": [[291, "image-classification"], [291, "id20"]], "Image Compression": [[288, "image-compression"]], "Image Preprocessing": [[291, "image-preprocessing"]], "Image Processing Basics": [[291, "image-processing-basics"], [291, "id2"], [291, "id4"]], "Image Properties": [[291, "image-properties"], [291, "id5"]], "Image Resolution": [[291, "image-resolution"]], "Image Segmentation": [[291, "image-segmentation"]], "Impact on Output": [[291, "impact-on-output"]], "Implementation": [[274, "implementation"], [274, "id2"], [287, "implementation"], [287, "id2"], [289, "implementation"], [290, "implementation"], [291, "implementation"], [291, "id17"], [292, "implementation"], [292, "id20"]], "Implementation Considerations": [[273, "implementation-considerations"], [286, "implementation-considerations"], [288, "implementation-considerations"]], "Implementation Details": [[293, "implementation-details"]], "Implementing ReLU": [[276, "implementing-relu"]], "Implementing leaky ReLU": [[276, "implementing-leaky-relu"]], "Implementing random search": [[276, "implementing-random-search"]], "Important Concepts": [[276, "important-concepts"]], "Importing the Torch Library": [[276, "importing-the-torch-library"]], "Improving Model Performance": [[276, "improving-model-performance"]], "Indexing and Slicing": [[290, "indexing-and-slicing"]], "Industry Examples": [[288, "industry-examples"]], "Information Preservation": [[288, "information-preservation"]], "Input Layer": [[289, "input-layer"]], "Input Station (Input Layer)": [[276, "input-station-input-layer"]], "Install": [[30, "install"], [75, "install"], [121, "install"], [166, "install"], [211, "install"], [256, "install"]], "Installation": [[29, "installation"], [74, "installation"], [120, "installation"], [165, "installation"], [210, "installation"], [255, "installation"]], "Installation and Setup": [[290, "installation-and-setup"]], "Installation \ud83d\udce6": [[271, "installation"]], "Instruction 1/3": [[276, "instruction-1-3"]], "Instruction 2/2": [[276, "instruction-2-2"]], "Instruction 2/3": [[276, "instruction-2-3"]], "Instruction 3/3": [[276, "instruction-3-3"]], "Instructions": [[276, "instructions"], [276, "id5"], [276, "id26"], [276, "id28"], [276, "id43"]], "Instructions (1/2)": [[276, "id9"], [276, "id12"], [276, "id14"], [276, "id17"], [276, "id22"], [276, "id34"], [276, "id37"], [276, "id40"]], "Instructions (1/3)": [[276, "instructions-1-3"], [276, "id20"], [276, "id30"]], "Instructions (2/2)": [[276, "id10"], [276, "id15"], [276, "id18"], [276, "id23"], [276, "id35"], [276, "id38"], [276, "id41"]], "Instructions (2/3)": [[276, "instructions-2-3"]], "Instructions (3/3)": [[276, "instructions-3-3"]], "Instructions 1/2": [[276, "instructions-1-2"], [276, "id3"]], "Instructions 2/2": [[276, "instructions-2-2"]], "Instructions 2/3": [[276, "id31"]], "Instructions 3/3": [[276, "id32"]], "Interpretation": [[288, "interpretation"]], "Introducing ReLU (Rectified Linear Unit) and LeakyReLU": [[276, "introducing-relu-rectified-linear-unit-and-leakyrelu"]], "Introducting the Mean Squared Error Loss": [[276, "introducting-the-mean-squared-error-loss"]], "Introduction": [[90, null], [281, null]], "Introduction to PyTorch": [[290, "introduction-to-pytorch"], [290, "id1"]], "Item Sets": [[288, "item-sets"]], "Just Right: Meet Sarah the Smart Learner": [[276, "just-right-meet-sarah-the-smart-learner"]], "K-Means Clustering": [[288, "k-means-clustering"]], "K-Means Deep Dive": [[288, "k-means-deep-dive"]], "Key Components": [[274, "key-components"], [287, "key-components"], [293, "key-components"]], "Key Concepts": [[274, "key-concepts"], [287, "key-concepts"]], "Key Differences in Forward Pass": [[276, "key-differences-in-forward-pass"]], "Key Differences of Multi-class classification from Binary Classification:": [[276, "key-differences-of-multi-class-classification-from-binary-classification"]], "Key Elements": [[274, "key-elements"], [287, "key-elements"]], "Key Features": [[274, "key-features"], [287, "key-features"]], "Key Features and Benefits": [[290, "key-features-and-benefits"]], "LSTM Components": [[292, "lstm-components"], [292, "id10"]], "LSTM and GRU": [[292, "lstm-and-gru"], [292, "id9"]], "Language Understanding": [[292, "language-understanding"], [292, "id16"]], "Layer Connections": [[289, "layer-connections"]], "Layer Initialization": [[276, "layer-initialization"]], "Layer Initialization and Transfer Learning": [[276, "layer-initialization-and-transfer-learning"]], "Layer Organization": [[291, "layer-organization"], [291, "id8"]], "Layer initialization": [[276, "id25"]], "Layers Explained": [[289, "layers-explained"]], "Layers and Modules": [[290, "layers-and-modules"]], "Leaky ReLU": [[276, "leaky-relu"], [289, "leaky-relu"]], "Learn more": [[24, "learn-more"], [69, "learn-more"], [115, "learn-more"], [160, "learn-more"], [205, "learn-more"], [250, "learn-more"]], "Learning Objectives": [[282, "learning-objectives"]], "Learning Process": [[274, "learning-process"], [287, "learning-process"], [289, "learning-process"]], "Learning Rate": [[289, "learning-rate"]], "Learning Rate = Step Size": [[276, "learning-rate-step-size"]], "Learning Rate Schedules": [[289, "learning-rate-schedules"]], "Learning Rate and Momentum with SGD Optimizer (Stocahastic Gradient Descent)": [[276, "learning-rate-and-momentum-with-sgd-optimizer-stocahastic-gradient-descent"]], "Learning Rate: Your Skiing Speed": [[276, "learning-rate-your-skiing-speed"]], "Learning Tips": [[90, "learning-tips"]], "Lets visualize the Linear_layers with their weights and biases": [[276, "lets-visualize-the-linear-layers-with-their-weights-and-biases"]], "Let\u2019s count the parameters in a neural network using a simple example:": [[276, "let-s-count-the-parameters-in-a-neural-network-using-a-simple-example"]], "License": [[29, "license"], [30, "license"], [31, "license"], [74, "license"], [75, "license"], [76, "license"], [120, "license"], [121, "license"], [122, "license"], [165, "license"], [166, "license"], [167, "license"], [210, "license"], [211, "license"], [212, "license"], [255, "license"], [256, "license"], [257, "license"]], "License for Sphinx": [[38, null], [83, null], [129, null], [174, null], [219, null], [264, null]], "Licenses for incorporated software": [[38, "licenses-for-incorporated-software"], [83, "licenses-for-incorporated-software"], [129, "licenses-for-incorporated-software"], [174, "licenses-for-incorporated-software"], [219, "licenses-for-incorporated-software"], [264, "licenses-for-incorporated-software"]], "Lift": [[288, "lift"]], "Linear Regression": [[274, "linear-regression"]], "Linear Regression (Regression)": [[287, "linear-regression-regression"]], "Linear vs Non-linear": [[288, "linear-vs-non-linear"]], "Linkage Methods": [[288, "linkage-methods"]], "Loading Data": [[276, "loading-data"]], "Loading Plots": [[288, "loading-plots"]], "Local Minima = Small Dips": [[276, "local-minima-small-dips"]], "Logistic Regression": [[274, "logistic-regression"]], "Logistic Regression (Classification)": [[287, "logistic-regression-classification"]], "Loss Calculation": [[290, "loss-calculation"]], "Loss Function in a formula": [[276, "loss-function-in-a-formula"]], "Loss Functions": [[289, "loss-functions"], [290, "loss-functions"]], "Loss function outputs:": [[276, "loss-function-outputs"]], "Loss function takes:": [[276, "loss-function-takes"]], "Low Momentum (0.1 - 0.5)": [[276, "low-momentum-0-1-0-5"]], "Machine Learning Fundamentals": [[271, "machine-learning-fundamentals"]], "Machine Learning Project Lifecycle": [[272, "machine-learning-project-lifecycle"], [285, "machine-learning-project-lifecycle"]], "Machine Learning for Dummies \ud83e\udde0": [[271, null]], "Machine Learning vs Deep Learning": [[272, "machine-learning-vs-deep-learning"], [285, "machine-learning-vs-deep-learning"]], "Magic Processing Stations (Hidden Layers)": [[276, "magic-processing-stations-hidden-layers"]], "Main differences": [[32, "main-differences"], [77, "main-differences"], [123, "main-differences"], [168, "main-differences"], [213, "main-differences"], [258, "main-differences"]], "Manifold Learning": [[288, "manifold-learning"]], "Manipulating the capacity of a network": [[276, "manipulating-the-capacity-of-a-network"]], "Mapping the Game to Machine Learning Concepts": [[276, "mapping-the-game-to-machine-learning-concepts"]], "Markdown + notebooks": [[26, "markdown-notebooks"], [71, "markdown-notebooks"], [117, "markdown-notebooks"], [162, "markdown-notebooks"], [207, "markdown-notebooks"], [252, "markdown-notebooks"]], "Markdown Files": [[24, null], [69, null], [115, null], [160, null], [205, null], [250, null]], "Market Basket Analysis": [[288, "market-basket-analysis"]], "Masked records": [[32, "masked-records"], [77, "masked-records"], [123, "masked-records"], [168, "masked-records"], [213, "masked-records"], [258, "masked-records"]], "Mathematical Operations": [[290, "mathematical-operations"]], "Medical Diagnosis": [[288, "medical-diagnosis"]], "Memory Management": [[289, "memory-management"], [290, "memory-management"]], "Message Lifecycle": [[1, "message-lifecycle"], [46, "message-lifecycle"], [92, "message-lifecycle"], [137, "message-lifecycle"], [182, "message-lifecycle"], [227, "message-lifecycle"]], "Mini-batch Gradient Descent": [[289, "mini-batch-gradient-descent"]], "Minimum Confidence": [[288, "minimum-confidence"]], "Minimum Support": [[288, "minimum-support"]], "Missing Value Analysis": [[273, "missing-value-analysis"], [286, "missing-value-analysis"]], "Model Architecture": [[290, "model-architecture"]], "Model Deployment": [[293, "model-deployment"]], "Model Development": [[293, "model-development"]], "Model Evaluation": [[276, "model-evaluation"]], "Model Evaluation Metrics": [[274, "model-evaluation-metrics"], [287, "model-evaluation-metrics"]], "Model Parameters": [[290, "model-parameters"]], "Model Saving/Loading": [[290, "model-saving-loading"]], "Model Training and Evaluation": [[290, "model-training-and-evaluation"], [290, "id6"]], "Modern Solutions": [[289, "modern-solutions"]], "Module 1: Foundations of Machine Learning": [[271, "module-1-foundations-of-machine-learning"]], "Module 2: Deep Learning Fundamentals": [[271, "module-2-deep-learning-fundamentals"]], "Module 3: Advanced Deep Learning": [[271, "module-3-advanced-deep-learning"]], "Momentum": [[289, "momentum"]], "Monitoring and Maintenance": [[293, "monitoring-and-maintenance"]], "Most Popular PyTorch Optimizers": [[276, "most-popular-pytorch-optimizers"]], "Moving Models to GPU": [[290, "moving-models-to-gpu"]], "Multi-GPU Training": [[290, "multi-gpu-training"]], "Multi-class classification: forward pass": [[276, "multi-class-classification-forward-pass"]], "Multiple Objects": [[291, "multiple-objects"]], "MyST markdown": [[26, "myst-markdown"], [71, "myst-markdown"], [117, "myst-markdown"], [162, "myst-markdown"], [207, "myst-markdown"], [252, "myst-markdown"]], "NCSA Open Source License": [[33, null], [78, null], [124, null], [169, null], [214, null], [259, null]], "Natural Language Processing Basics": [[292, "natural-language-processing-basics"], [292, "id13"]], "Network Architecture": [[289, "network-architecture"]], "Network Components": [[290, "network-components"], [292, "network-components"], [292, "id8"]], "Network Topology": [[289, "network-topology"]], "Neural Network Overview": [[276, "neural-network-overview"]], "Neurons and Connections": [[289, "neurons-and-connections"]], "New Algorithm": [[1, "new-algorithm"], [46, "new-algorithm"], [92, "new-algorithm"], [137, "new-algorithm"], [182, "new-algorithm"], [227, "new-algorithm"]], "New features": [[32, "new-features"], [77, "new-features"], [123, "new-features"], [168, "new-features"], [213, "new-features"], [258, "new-features"]], "Noise Points": [[288, "noise-points"]], "Not in git log": [[36, "not-in-git-log"], [81, "not-in-git-log"], [127, "not-in-git-log"], [172, "not-in-git-log"], [217, "not-in-git-log"], [262, "not-in-git-log"]], "Notebooks with MyST Markdown": [[25, null], [70, null], [116, null], [161, null], [206, null], [251, null]], "Object Detection": [[291, "object-detection"], [291, "id21"]], "Object Localization": [[291, "object-localization"]], "One Hot encoding": [[276, "one-hot-encoding"]], "Open Source Framework Overview": [[290, "open-source-framework-overview"]], "Optimization Techniques": [[289, "optimization-techniques"], [289, "id7"]], "Optimizers": [[290, "optimizers"]], "Optimizing maskedarray": [[32, "optimizing-maskedarray"], [77, "optimizing-maskedarray"], [123, "optimizing-maskedarray"], [168, "optimizing-maskedarray"], [213, "optimizing-maskedarray"], [258, "optimizing-maskedarray"]], "Orthogonality": [[288, "orthogonality"]], "Output Layer": [[289, "output-layer"]], "Overfitting": [[289, "overfitting"]], "Overfitting and Underfitting Models": [[276, "overfitting-and-underfitting-models"]], "Overfitting: Meet Mary the Memorizer": [[276, "overfitting-meet-mary-the-memorizer"]], "Overview": [[1, "overview"], [46, "overview"], [92, "overview"], [137, "overview"], [182, "overview"], [227, "overview"], [276, "overview"], [284, null], [294, null]], "PCA Fundamentals": [[288, "pca-fundamentals"]], "PCA Process": [[288, "pca-process"]], "Padding Techniques": [[291, "padding-techniques"], [291, "id12"]], "Parameter Counting": [[276, "parameter-counting"]], "Parameter Tuning": [[288, "parameter-tuning"]], "Pattern Identification": [[291, "pattern-identification"]], "Performance Metrics": [[290, "performance-metrics"]], "Performance Tips": [[288, "performance-tips"]], "Perplexity Parameter": [[288, "perplexity-parameter"]], "Pitaya Smoothie": [[17, null], [62, null], [108, null], [153, null], [198, null], [243, null]], "Pixels and Colors": [[291, "pixels-and-colors"]], "Pooling Methods": [[291, "pooling-methods"], [291, "id11"]], "Pooling and Padding": [[291, "pooling-and-padding"], [291, "id10"], [291, "id13"]], "Popular Models": [[293, "popular-models"]], "Popular Techniques": [[293, "popular-techniques"]], "Practical Applications": [[288, "practical-applications"], [293, "practical-applications"]], "Practical Tips": [[276, "practical-tips"]], "Practical Use": [[274, "practical-use"], [287, "practical-use"]], "Pre-built Models": [[290, "pre-built-models"]], "Pre-trained Models": [[291, "pre-trained-models"], [291, "id16"]], "Prerequisites": [[90, "prerequisites"]], "Prerequisites \ud83d\udcda": [[271, "prerequisites"]], "Principal Component Analysis": [[288, "principal-component-analysis"]], "Principal Components": [[288, "principal-components"]], "Production Considerations": [[293, "production-considerations"]], "Project Goals": [[282, "project-goals"]], "Project Overview": [[282, "project-overview"]], "Project Structure": [[282, "project-structure"]], "Pruning Strategies": [[288, "pruning-strategies"]], "PyTorch Basics": [[290, "pytorch-basics"]], "PyTorch Implementation": [[276, "pytorch-implementation"]], "Python Integration": [[290, "python-integration"]], "Quickly add YAML metadata for MyST Notebooks": [[25, "quickly-add-yaml-metadata-for-myst-notebooks"], [70, "quickly-add-yaml-metadata-for-myst-notebooks"], [116, "quickly-add-yaml-metadata-for-myst-notebooks"], [161, "quickly-add-yaml-metadata-for-myst-notebooks"], [206, "quickly-add-yaml-metadata-for-myst-notebooks"], [251, "quickly-add-yaml-metadata-for-myst-notebooks"]], "Quickstart": [[284, "quickstart"], [294, "quickstart"]], "RGB Channels": [[291, "rgb-channels"]], "RMSprop": [[289, "rmsprop"]], "RNN Architecture": [[292, "rnn-architecture"], [292, "id6"]], "Random Forests": [[274, "random-forests"], [287, "random-forests"]], "ReLU (Rectified Linear Unit)": [[276, "relu-rectified-linear-unit"], [289, "relu-rectified-linear-unit"]], "Real-World Example": [[272, "real-world-example"], [276, "real-world-example"], [285, "real-world-example"]], "Real-World Example: House Price Prediction": [[273, "real-world-example-house-price-prediction"], [286, "real-world-example-house-price-prediction"]], "Real-World Impact": [[276, "real-world-impact"]], "Real-World Scenarios": [[276, "real-world-scenarios"]], "Real-World Solutions": [[273, "real-world-solutions"], [286, "real-world-solutions"]], "Real-World Uses": [[288, "real-world-uses"]], "Real-world Analogy": [[276, "real-world-analogy"]], "Recommendation Systems": [[288, "recommendation-systems"]], "Reduction Techniques": [[288, "reduction-techniques"]], "Regression (Continuous Output)": [[276, "regression-continuous-output"]], "Regression Loss Functions": [[276, "regression-loss-functions"]], "Regression Metrics": [[274, "regression-metrics"], [287, "regression-metrics"]], "Regression: Forward Propogation": [[276, "regression-forward-propogation"]], "Regularization": [[289, "regularization"]], "Result Interpretation": [[288, "result-interpretation"]], "Retail Analytics": [[288, "retail-analytics"]], "Revision notes": [[32, "revision-notes"], [77, "revision-notes"], [123, "revision-notes"], [168, "revision-notes"], [213, "revision-notes"], [258, "revision-notes"]], "Rule Evaluation": [[288, "rule-evaluation"]], "Rule Generation": [[288, "rule-generation"]], "Rule Selection": [[288, "rule-selection"]], "Same Padding": [[291, "same-padding"]], "Sample Roles and Directives": [[24, "sample-roles-and-directives"], [69, "sample-roles-and-directives"], [115, "sample-roles-and-directives"], [160, "sample-roles-and-directives"], [205, "sample-roles-and-directives"], [250, "sample-roles-and-directives"]], "Scaling Categorical Data": [[273, "scaling-categorical-data"], [286, "scaling-categorical-data"]], "Scaling Methods": [[273, "scaling-methods"], [286, "scaling-methods"]], "Score Plots": [[288, "score-plots"]], "Scree Plots": [[288, "scree-plots"]], "Second Part (Bias Gradients)": [[276, "second-part-bias-gradients"]], "Section 3 - Neural Network Architecture and Hyperparameters": [[276, "section-3-neural-network-architecture-and-hyperparameters"]], "Selection Criteria": [[289, "selection-criteria"]], "Selection Method Comparison": [[273, "selection-method-comparison"], [286, "selection-method-comparison"]], "Selection Methods": [[273, "selection-methods"], [286, "selection-methods"]], "Sequence Processing": [[292, "sequence-processing"], [292, "id2"]], "Sequential Memory": [[292, "sequential-memory"], [292, "id5"]], "Sequential Models": [[290, "sequential-models"]], "Shape Manipulation": [[290, "shape-manipulation"]], "Should masked arrays be filled before processing or not?": [[32, "should-masked-arrays-be-filled-before-processing-or-not"], [77, "should-masked-arrays-be-filled-before-processing-or-not"], [123, "should-masked-arrays-be-filled-before-processing-or-not"], [168, "should-masked-arrays-be-filled-before-processing-or-not"], [213, "should-masked-arrays-be-filled-before-processing-or-not"], [258, "should-masked-arrays-be-filled-before-processing-or-not"]], "Show me": [[31, "show-me"], [76, "show-me"], [122, "show-me"], [167, "show-me"], [212, "show-me"], [257, "show-me"]], "Sigmoid Function": [[289, "sigmoid-function"]], "Sigmoid Function Limitations": [[276, "sigmoid-function-limitations"]], "Sigmoid function example with an Activation layer": [[276, "sigmoid-function-example-with-an-activation-layer"]], "Simple Real-World Example": [[276, "simple-real-world-example"]], "Social Network Analysis": [[288, "social-network-analysis"]], "Softmax Function Limitations": [[276, "softmax-function-limitations"]], "Softmax as an Activation Layer": [[276, "softmax-as-an-activation-layer"]], "Some terminology before we move forward": [[276, "some-terminology-before-we-move-forward"]], "Stacking layers with nn.Sequential()": [[276, "stacking-layers-with-nn-sequential"]], "Stacking linear layers": [[276, "stacking-linear-layers"]], "Start Learning! \ud83d\ude80": [[271, "start-learning"]], "Statistical Summary": [[273, "statistical-summary"], [286, "statistical-summary"]], "Step 1: Establish a Baseline": [[276, "step-1-establish-a-baseline"]], "Step 2: Reduce Overfitting": [[276, "step-2-reduce-overfitting"]], "Step 3: Optimize Hyperparameters": [[276, "step-3-optimize-hyperparameters"]], "Stochastic Gradient Descent (SGD)": [[289, "stochastic-gradient-descent-sgd"]], "Structure Basics": [[289, "structure-basics"]], "Structure of translation files": [[42, "structure-of-translation-files"], [87, "structure-of-translation-files"], [133, "structure-of-translation-files"], [178, "structure-of-translation-files"], [223, "structure-of-translation-files"], [268, "structure-of-translation-files"]], "Style Transfer": [[291, "style-transfer"]], "Suggested Extensions": [[282, "suggested-extensions"]], "Summary": [[289, "summary"]], "Support": [[90, "support"], [288, "support"]], "Taking Steps = Updating the Model": [[276, "taking-steps-updating-the-model"]], "Tanh (Hyperbolic Tangent Function)": [[289, "tanh-hyperbolic-tangent-function"]], "Technical Requirements": [[282, "technical-requirements"]], "Tensor Attributes": [[276, "tensor-attributes"]], "Tensor Fundamentals": [[290, "tensor-fundamentals"]], "Tensor Operations": [[290, "tensor-operations"]], "Text Classification": [[292, "text-classification"], [292, "id17"]], "Text Processing": [[292, "text-processing"], [292, "id14"]], "Text Representation": [[292, "text-representation"], [292, "id15"]], "Thanks": [[32, "thanks"], [77, "thanks"], [123, "thanks"], [168, "thanks"], [213, "thanks"], [258, "thanks"]], "The Assignment Process (Forward Pass)": [[276, "the-assignment-process-forward-pass"]], "The Key Phases (Through Our Cooking Analogy)": [[272, "the-key-phases-through-our-cooking-analogy"], [285, "the-key-phases-through-our-cooking-analogy"]], "The Kitchen Analogy": [[272, "the-kitchen-analogy"], [285, "the-kitchen-analogy"]], "The MIT License (MIT)": [[22, null], [67, null], [113, null], [158, null], [203, null], [248, null]], "The Model": [[1, "the-model"], [46, "the-model"], [92, "the-model"], [137, "the-model"], [182, "the-model"], [227, "the-model"]], "The Park = The \u201cLoss Landscape\u201d": [[276, "the-park-the-loss-landscape"]], "The Restaurant Kitchen Model": [[276, "the-restaurant-kitchen-model"]], "The School Club Assignment System": [[276, "the-school-club-assignment-system"]], "The Skiing Adventure of SGD": [[276, "the-skiing-adventure-of-sgd"]], "The Story of Three Students": [[276, "the-story-of-three-students"]], "The Three Stages of Learning: Training, Validation and Testing": [[276, "the-three-stages-of-learning-training-validation-and-testing"]], "The Treasure = The Best Model": [[276, "the-treasure-the-best-model"]], "The Treasure Hunt Game: An Analogy for Gradient Descent": [[276, "the-treasure-hunt-game-an-analogy-for-gradient-descent"]], "The Video Game Character Selection Analogy": [[276, "the-video-game-character-selection-analogy"]], "The dataloader": [[276, "the-dataloader"]], "The sigmoid and softmax functions": [[276, "the-sigmoid-and-softmax-functions"]], "There are multiple types of Layers": [[276, "there-are-multiple-types-of-layers"]], "Tips for Using Optimizers": [[276, "tips-for-using-optimizers"]], "To update a translation": [[42, "to-update-a-translation"], [87, "to-update-a-translation"], [133, "to-update-a-translation"], [178, "to-update-a-translation"], [223, "to-update-a-translation"], [268, "to-update-a-translation"]], "ToDo": [[31, "todo"], [76, "todo"], [122, "todo"], [167, "todo"], [212, "todo"], [257, "todo"]], "Training Neural Networks": [[289, "training-neural-networks"]], "Training Process": [[289, "training-process"], [290, "training-process"]], "Training a neural network": [[276, "training-a-neural-network"]], "Transfer Learning": [[276, "transfer-learning"], [291, "transfer-learning"], [291, "id15"]], "Transformers": [[293, "transformers"]], "Translation source files": [[42, "translation-source-files"], [87, "translation-source-files"], [133, "translation-source-files"], [178, "translation-source-files"], [223, "translation-source-files"], [268, "translation-source-files"]], "Translation workflow": [[42, null], [87, null], [133, null], [178, null], [223, null], [268, null]], "Tree Structure": [[274, "tree-structure"], [287, "tree-structure"]], "Types of Clustering": [[288, "types-of-clustering"]], "Types of Generation": [[293, "types-of-generation"]], "Types of Loss Functions": [[276, "types-of-loss-functions"]], "Types of Neural Networks": [[289, "types-of-neural-networks"]], "Types of Padding": [[291, "types-of-padding"]], "Types of RNNs": [[292, "types-of-rnns"]], "Underfitting": [[289, "underfitting"]], "Underfitting: Meet Johnny the Generalizer": [[276, "underfitting-meet-johnny-the-generalizer"]], "Understanding Attention": [[293, "understanding-attention"]], "Understanding Digital Images": [[291, "understanding-digital-images"], [291, "id3"]], "Understanding MSE with a Pizza Delivery Analogy": [[276, "understanding-mse-with-a-pizza-delivery-analogy"]], "Understanding Momentum: The Skiing Inertia": [[276, "understanding-momentum-the-skiing-inertia"]], "Understanding Sequential Data": [[292, "understanding-sequential-data"], [292, "id3"]], "Understanding the Difference": [[274, "understanding-the-difference"], [287, "understanding-the-difference"]], "Understanding the Differences Between Terms": [[276, "understanding-the-differences-between-terms"]], "Understanding the Output of the code above \u2b06\ufe0e": [[276, "understanding-the-output-of-the-code-above"]], "Understanding the Parameter Counter": [[276, "understanding-the-parameter-counter"]], "Updating the weights manually": [[276, "updating-the-weights-manually"]], "Use": [[30, "use"], [75, "use"], [121, "use"], [166, "use"], [211, "use"], [256, "use"]], "Use Cases": [[288, "use-cases"]], "Use in Browser": [[31, "use-in-browser"], [76, "use-in-browser"], [122, "use-in-browser"], [167, "use-in-browser"], [212, "use-in-browser"], [257, "use-in-browser"]], "Use with node.js": [[31, "use-with-node-js"], [76, "use-with-node-js"], [122, "use-with-node-js"], [167, "use-with-node-js"], [212, "use-with-node-js"], [257, "use-with-node-js"]], "Using Derivatives to Update Model Parameters: A Treasure Hunt Analogy": [[276, "using-derivatives-to-update-model-parameters-a-treasure-hunt-analogy"]], "Using Loss Functions to assess model predictions": [[276, "using-loss-functions-to-assess-model-predictions"]], "Using maskedarray with matplotlib": [[32, "using-maskedarray-with-matplotlib"], [77, "using-maskedarray-with-matplotlib"], [123, "using-maskedarray-with-matplotlib"], [168, "using-maskedarray-with-matplotlib"], [213, "using-maskedarray-with-matplotlib"], [258, "using-maskedarray-with-matplotlib"]], "Using the MSELoss": [[276, "using-the-mseloss"]], "Using the PyTorch optimizer": [[276, "using-the-pytorch-optimizer"]], "Using the new package with numpy.core.ma": [[32, "using-the-new-package-with-numpy-core-ma"], [77, "using-the-new-package-with-numpy-core-ma"], [123, "using-the-new-package-with-numpy-core-ma"], [168, "using-the-new-package-with-numpy-core-ma"], [213, "using-the-new-package-with-numpy-core-ma"], [258, "using-the-new-package-with-numpy-core-ma"]], "Valid Padding": [[291, "valid-padding"]], "Validation Techniques": [[274, "validation-techniques"], [287, "validation-techniques"], [290, "validation-techniques"]], "Vanishing Gradient Problem": [[289, "vanishing-gradient-problem"]], "Variance Explained": [[288, "variance-explained"]], "Variance Explanation": [[288, "variance-explanation"]], "Video Processing": [[291, "video-processing"]], "Visualization": [[288, "visualization"], [288, "id1"]], "Weight Decay: The \u201cLazy Student\u201d Method": [[276, "weight-decay-the-lazy-student-method"]], "Weight Updates": [[289, "weight-updates"]], "Weight and Bias": [[289, "weight-and-bias"]], "Welcome to your Jupyter Book": [[23, null], [68, null], [114, null], [159, null], [204, null], [249, null]], "What Makes This Course Different? \ud83d\udca1": [[271, "what-makes-this-course-different"]], "What are tensor attributes?": [[276, "what-are-tensor-attributes"]], "What is Backpropagation?": [[276, "what-is-backpropagation"]], "What is Forward Propagation?": [[276, "what-is-forward-propagation"]], "What is Machine Learning?": [[272, "what-is-machine-learning"], [285, "what-is-machine-learning"]], "What is MyST?": [[24, "what-is-myst"], [69, "what-is-myst"], [115, "what-is-myst"], [160, "what-is-myst"], [205, "what-is-myst"], [250, "what-is-myst"]], "What is PyTorch": [[290, "what-is-pytorch"]], "What is a Loss Function?": [[276, "what-is-a-loss-function"]], "What the code above does": [[276, "what-the-code-above-does"]], "When to Use Each": [[276, "when-to-use-each"], [276, "id1"]], "When to Use Each Method": [[273, "id1"], [286, "id1"]], "When to Use Each Method?": [[273, "when-to-use-each-method"], [286, "when-to-use-each-method"]], "When to Use Each Type": [[288, "when-to-use-each-type"]], "Why Do We Need Loss Functions?": [[276, "why-do-we-need-loss-functions"]], "Why Do We Need a Project Lifecycle?": [[272, "why-do-we-need-a-project-lifecycle"], [285, "why-do-we-need-a-project-lifecycle"]], "Why It Matters": [[276, "why-it-matters"]], "Why It\u2019s Important:": [[276, "why-it-s-important"]], "Why This Course? \ud83e\udd14": [[271, "why-this-course"]], "Why This Split is Important": [[276, "why-this-split-is-important"]], "Why Use All Three?": [[276, "why-use-all-three"]], "Why do we need Machine Learning?": [[272, "why-do-we-need-machine-learning"], [285, "why-do-we-need-machine-learning"]], "Why do we need activation functions?": [[276, "why-do-we-need-activation-functions"]], "Why do we use One Hot encoding?": [[276, "why-do-we-use-one-hot-encoding"]], "Why is it Used and Important?": [[276, "why-is-it-used-and-important"], [276, "id2"]], "Why this is Fascinating": [[276, "why-this-is-fascinating"]], "Workflow of translations": [[42, "workflow-of-translations"], [87, "workflow-of-translations"], [133, "workflow-of-translations"], [178, "workflow-of-translations"], [223, "workflow-of-translations"], [268, "workflow-of-translations"]], "Working with Tensors": [[290, "working-with-tensors"], [290, "id4"]], "Writing a training loop": [[276, "writing-a-training-loop"]], "Writing our first Training Loop!": [[276, "writing-our-first-training-loop"]], "Writing the evaluation loop": [[276, "writing-the-evaluation-loop"]], "XGBoost": [[274, "xgboost"], [287, "xgboost"]], "You = The Learning Algorithm": [[276, "you-the-learning-algorithm"]], "Your first neural network": [[276, "your-first-neural-network"]], "Zero Momentum (0.0)": [[276, "zero-momentum-0-0"]], "[0.4.4] on September 27, 2017": [[31, "on-september-27-2017"], [76, "on-september-27-2017"], [122, "on-september-27-2017"], [167, "on-september-27-2017"], [212, "on-september-27-2017"], [257, "on-september-27-2017"]], "[0.4.5] on November 06, 2017": [[31, "on-november-06-2017"], [76, "on-november-06-2017"], [122, "on-november-06-2017"], [167, "on-november-06-2017"], [212, "on-november-06-2017"], [257, "on-november-06-2017"]], "[0.4.6] on January 05, 2018": [[31, "on-january-05-2018"], [76, "on-january-05-2018"], [122, "on-january-05-2018"], [167, "on-january-05-2018"], [212, "on-january-05-2018"], [257, "on-january-05-2018"]], "[0.5.0] on August 15, 2018": [[31, "on-august-15-2018"], [76, "on-august-15-2018"], [122, "on-august-15-2018"], [167, "on-august-15-2018"], [212, "on-august-15-2018"], [257, "on-august-15-2018"]], "[0.5.2] on September 07, 2018": [[31, "on-september-07-2018"], [76, "on-september-07-2018"], [122, "on-september-07-2018"], [167, "on-september-07-2018"], [212, "on-september-07-2018"], [257, "on-september-07-2018"]], "[0.5.3] on November 11, 2018": [[31, "on-november-11-2018"], [76, "on-november-11-2018"], [122, "on-november-11-2018"], [167, "on-november-11-2018"], [212, "on-november-11-2018"], [257, "on-november-11-2018"]], "[0.5.4] on January 20, 2019": [[31, "on-january-20-2019"], [76, "on-january-20-2019"], [122, "on-january-20-2019"], [167, "on-january-20-2019"], [212, "on-january-20-2019"], [257, "on-january-20-2019"]], "[0.5.5] on February 07, 2019": [[31, "on-february-07-2019"], [76, "on-february-07-2019"], [122, "on-february-07-2019"], [167, "on-february-07-2019"], [212, "on-february-07-2019"], [257, "on-february-07-2019"]], "[0.6.0] on October 04, 2019": [[31, "on-october-04-2019"], [76, "on-october-04-2019"], [122, "on-october-04-2019"], [167, "on-october-04-2019"], [212, "on-october-04-2019"], [257, "on-october-04-2019"]], "a. Feedforward Neural Network (FNN)": [[289, "a-feedforward-neural-network-fnn"]], "b. Convolutional Neural Network (CNN)": [[289, "b-convolutional-neural-network-cnn"]], "batch_features": [[276, "batch-features"]], "batch_labels": [[276, "batch-labels"]], "c. Recurrent Neural Network (RNN)": [[289, "c-recurrent-neural-network-rnn"]], "d. Long Short-Term Memory (LSTM)": [[289, "d-long-short-term-memory-lstm"]], "e. Generative Adversarial Network (GAN)": [[289, "e-generative-adversarial-network-gan"]], "email Package Architecture": [[1, null], [46, null], [92, null], [137, null], [182, null], [227, null]], "gevent_zeromq, now zmq.green": [[36, "gevent-zeromq-now-zmq-green"], [81, "gevent-zeromq-now-zmq-green"], [127, "gevent-zeromq-now-zmq-green"], [172, "gevent-zeromq-now-zmq-green"], [217, "gevent-zeromq-now-zmq-green"], [262, "gevent-zeromq-now-zmq-green"]], "markdown-it-container": [[29, null], [74, null], [120, null], [165, null], [210, null], [255, null]], "markdown-it-deflist": [[30, null], [75, null], [121, null], [166, null], [211, null], [256, null]], "markdown-it-texmath": [[31, null], [76, null], [122, null], [167, null], [212, null], [257, null]], "t-SNE Basics": [[288, "t-sne-basics"]], "\u2728 Our training goal is to minimize this loss! The lower the loss, the better the model! \u2728": [[276, "our-training-goal-is-to-minimize-this-loss-the-lower-the-loss-the-better-the-model"]], "\ud83d\udd0d Real-life analogy:": [[289, "real-life-analogy"], [289, "id1"], [289, "id2"]]}, "docnames": [".conda/lib/python3.1/distutils/tests/includetest", ".conda/lib/python3.1/email/architecture", ".conda/lib/python3.1/site-packages/a11y_pygments/a11y_dark/README", ".conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_dark/README", ".conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_light/README", ".conda/lib/python3.1/site-packages/a11y_pygments/a11y_light/README", ".conda/lib/python3.1/site-packages/a11y_pygments/blinds_dark/README", ".conda/lib/python3.1/site-packages/a11y_pygments/blinds_light/README", ".conda/lib/python3.1/site-packages/a11y_pygments/github_dark/README", ".conda/lib/python3.1/site-packages/a11y_pygments/github_dark_colorblind/README", ".conda/lib/python3.1/site-packages/a11y_pygments/github_dark_high_contrast/README", ".conda/lib/python3.1/site-packages/a11y_pygments/github_light/README", ".conda/lib/python3.1/site-packages/a11y_pygments/github_light_colorblind/README", ".conda/lib/python3.1/site-packages/a11y_pygments/github_light_high_contrast/README", ".conda/lib/python3.1/site-packages/a11y_pygments/gotthard_dark/README", ".conda/lib/python3.1/site-packages/a11y_pygments/gotthard_light/README", ".conda/lib/python3.1/site-packages/a11y_pygments/greative/README", ".conda/lib/python3.1/site-packages/a11y_pygments/pitaya_smoothie/README", ".conda/lib/python3.1/site-packages/alabaster-0.7.16.dist-info/LICENSE", ".conda/lib/python3.1/site-packages/click-8.1.7.dist-info/LICENSE", ".conda/lib/python3.1/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README", ".conda/lib/python3.1/site-packages/idna-3.10.dist-info/LICENSE", ".conda/lib/python3.1/site-packages/imagesize-1.4.1.dist-info/LICENSE", ".conda/lib/python3.1/site-packages/jupyter_book/book_template/intro", ".conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown", ".conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown-notebooks", ".conda/lib/python3.1/site-packages/jupyter_book/book_template/notebooks", ".conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/AUTHORS", ".conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/LICENSE", ".conda/lib/python3.1/site-packages/mdit_py_plugins/container/README", ".conda/lib/python3.1/site-packages/mdit_py_plugins/deflist/README", ".conda/lib/python3.1/site-packages/mdit_py_plugins/texmath/README", ".conda/lib/python3.1/site-packages/numpy/ma/README", ".conda/lib/python3.1/site-packages/numpy/random/LICENSE", ".conda/lib/python3.1/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS", ".conda/lib/python3.1/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE", ".conda/lib/python3.1/site-packages/pyzmq-25.1.2.dist-info/AUTHORS", ".conda/lib/python3.1/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE", ".conda/lib/python3.1/site-packages/sphinx-7.4.7.dist-info/LICENSE", ".conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/base", ".conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/class", ".conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/module", ".conda/lib/python3.1/site-packages/sphinx_book_theme/assets/translations/README", ".conda/lib/python3.1/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE", ".conda/lib/python3.1/site-packages/torchgen/packaged/autograd/README", ".conda/lib/python3.11/distutils/tests/includetest", ".conda/lib/python3.11/email/architecture", ".conda/lib/python3.11/site-packages/a11y_pygments/a11y_dark/README", ".conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_dark/README", ".conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_light/README", ".conda/lib/python3.11/site-packages/a11y_pygments/a11y_light/README", ".conda/lib/python3.11/site-packages/a11y_pygments/blinds_dark/README", ".conda/lib/python3.11/site-packages/a11y_pygments/blinds_light/README", ".conda/lib/python3.11/site-packages/a11y_pygments/github_dark/README", ".conda/lib/python3.11/site-packages/a11y_pygments/github_dark_colorblind/README", ".conda/lib/python3.11/site-packages/a11y_pygments/github_dark_high_contrast/README", ".conda/lib/python3.11/site-packages/a11y_pygments/github_light/README", ".conda/lib/python3.11/site-packages/a11y_pygments/github_light_colorblind/README", ".conda/lib/python3.11/site-packages/a11y_pygments/github_light_high_contrast/README", ".conda/lib/python3.11/site-packages/a11y_pygments/gotthard_dark/README", ".conda/lib/python3.11/site-packages/a11y_pygments/gotthard_light/README", ".conda/lib/python3.11/site-packages/a11y_pygments/greative/README", ".conda/lib/python3.11/site-packages/a11y_pygments/pitaya_smoothie/README", ".conda/lib/python3.11/site-packages/alabaster-0.7.16.dist-info/LICENSE", ".conda/lib/python3.11/site-packages/click-8.1.7.dist-info/LICENSE", ".conda/lib/python3.11/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README", ".conda/lib/python3.11/site-packages/idna-3.10.dist-info/LICENSE", ".conda/lib/python3.11/site-packages/imagesize-1.4.1.dist-info/LICENSE", ".conda/lib/python3.11/site-packages/jupyter_book/book_template/intro", ".conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown", ".conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown-notebooks", ".conda/lib/python3.11/site-packages/jupyter_book/book_template/notebooks", ".conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/AUTHORS", ".conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/LICENSE", ".conda/lib/python3.11/site-packages/mdit_py_plugins/container/README", ".conda/lib/python3.11/site-packages/mdit_py_plugins/deflist/README", ".conda/lib/python3.11/site-packages/mdit_py_plugins/texmath/README", ".conda/lib/python3.11/site-packages/numpy/ma/README", ".conda/lib/python3.11/site-packages/numpy/random/LICENSE", ".conda/lib/python3.11/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS", ".conda/lib/python3.11/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE", ".conda/lib/python3.11/site-packages/pyzmq-25.1.2.dist-info/AUTHORS", ".conda/lib/python3.11/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE", ".conda/lib/python3.11/site-packages/sphinx-7.4.7.dist-info/LICENSE", ".conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/base", ".conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/class", ".conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/module", ".conda/lib/python3.11/site-packages/sphinx_book_theme/assets/translations/README", ".conda/lib/python3.11/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE", ".conda/lib/python3.11/site-packages/torchgen/packaged/autograd/README", "README", "_sources/.conda/lib/python3.1/distutils/tests/includetest", "_sources/.conda/lib/python3.1/email/architecture", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_dark/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_dark/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_light/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_light/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/blinds_dark/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/blinds_light/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark_colorblind/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark_high_contrast/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_light/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_light_colorblind/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_light_high_contrast/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/gotthard_dark/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/gotthard_light/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/greative/README", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/pitaya_smoothie/README", "_sources/.conda/lib/python3.1/site-packages/alabaster-0.7.16.dist-info/LICENSE", "_sources/.conda/lib/python3.1/site-packages/click-8.1.7.dist-info/LICENSE", "_sources/.conda/lib/python3.1/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README", "_sources/.conda/lib/python3.1/site-packages/idna-3.10.dist-info/LICENSE", "_sources/.conda/lib/python3.1/site-packages/imagesize-1.4.1.dist-info/LICENSE", "_sources/.conda/lib/python3.1/site-packages/jupyter_book/book_template/intro", "_sources/.conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown", "_sources/.conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown-notebooks", "_sources/.conda/lib/python3.1/site-packages/jupyter_book/book_template/notebooks", "_sources/.conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/AUTHORS", "_sources/.conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/LICENSE", "_sources/.conda/lib/python3.1/site-packages/mdit_py_plugins/container/README", "_sources/.conda/lib/python3.1/site-packages/mdit_py_plugins/deflist/README", "_sources/.conda/lib/python3.1/site-packages/mdit_py_plugins/texmath/README", "_sources/.conda/lib/python3.1/site-packages/numpy/ma/README", "_sources/.conda/lib/python3.1/site-packages/numpy/random/LICENSE", "_sources/.conda/lib/python3.1/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS", "_sources/.conda/lib/python3.1/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE", "_sources/.conda/lib/python3.1/site-packages/pyzmq-25.1.2.dist-info/AUTHORS", "_sources/.conda/lib/python3.1/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE", "_sources/.conda/lib/python3.1/site-packages/sphinx-7.4.7.dist-info/LICENSE", "_sources/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/base", "_sources/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/class", "_sources/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/module", "_sources/.conda/lib/python3.1/site-packages/sphinx_book_theme/assets/translations/README", "_sources/.conda/lib/python3.1/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE", "_sources/.conda/lib/python3.1/site-packages/torchgen/packaged/autograd/README", "_sources/.conda/lib/python3.11/distutils/tests/includetest", "_sources/.conda/lib/python3.11/email/architecture", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_dark/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_dark/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_light/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_light/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/blinds_dark/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/blinds_light/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark_colorblind/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark_high_contrast/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_light/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_light_colorblind/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_light_high_contrast/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/gotthard_dark/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/gotthard_light/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/greative/README", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/pitaya_smoothie/README", "_sources/.conda/lib/python3.11/site-packages/alabaster-0.7.16.dist-info/LICENSE", "_sources/.conda/lib/python3.11/site-packages/click-8.1.7.dist-info/LICENSE", "_sources/.conda/lib/python3.11/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README", "_sources/.conda/lib/python3.11/site-packages/idna-3.10.dist-info/LICENSE", "_sources/.conda/lib/python3.11/site-packages/imagesize-1.4.1.dist-info/LICENSE", "_sources/.conda/lib/python3.11/site-packages/jupyter_book/book_template/intro", "_sources/.conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown", "_sources/.conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown-notebooks", "_sources/.conda/lib/python3.11/site-packages/jupyter_book/book_template/notebooks", "_sources/.conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/AUTHORS", "_sources/.conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/LICENSE", "_sources/.conda/lib/python3.11/site-packages/mdit_py_plugins/container/README", "_sources/.conda/lib/python3.11/site-packages/mdit_py_plugins/deflist/README", "_sources/.conda/lib/python3.11/site-packages/mdit_py_plugins/texmath/README", "_sources/.conda/lib/python3.11/site-packages/numpy/ma/README", "_sources/.conda/lib/python3.11/site-packages/numpy/random/LICENSE", "_sources/.conda/lib/python3.11/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS", "_sources/.conda/lib/python3.11/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE", "_sources/.conda/lib/python3.11/site-packages/pyzmq-25.1.2.dist-info/AUTHORS", "_sources/.conda/lib/python3.11/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE", "_sources/.conda/lib/python3.11/site-packages/sphinx-7.4.7.dist-info/LICENSE", "_sources/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/base", "_sources/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/class", "_sources/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/module", "_sources/.conda/lib/python3.11/site-packages/sphinx_book_theme/assets/translations/README", "_sources/.conda/lib/python3.11/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE", "_sources/.conda/lib/python3.11/site-packages/torchgen/packaged/autograd/README", "_sources/.vercel/output/static/.conda/lib/python3.1/distutils/tests/includetest", "_sources/.vercel/output/static/.conda/lib/python3.1/email/architecture", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_light/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_light/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/blinds_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/blinds_light/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark_colorblind/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark_high_contrast/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_light/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_light_colorblind/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_light_high_contrast/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/gotthard_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/gotthard_light/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/greative/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/pitaya_smoothie/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/alabaster-0.7.16.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/click-8.1.7.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/idna-3.10.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/imagesize-1.4.1.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/jupyter_book/book_template/intro", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown-notebooks", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/jupyter_book/book_template/notebooks", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/AUTHORS", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/mdit_py_plugins/container/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/mdit_py_plugins/deflist/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/mdit_py_plugins/texmath/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/numpy/ma/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/numpy/random/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/pyzmq-25.1.2.dist-info/AUTHORS", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx-7.4.7.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/base", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/class", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/module", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx_book_theme/assets/translations/README", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/torchgen/packaged/autograd/README", "_sources/.vercel/output/static/.conda/lib/python3.11/distutils/tests/includetest", "_sources/.vercel/output/static/.conda/lib/python3.11/email/architecture", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_light/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_light/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/blinds_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/blinds_light/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark_colorblind/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark_high_contrast/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_light/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_light_colorblind/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_light_high_contrast/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/gotthard_dark/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/gotthard_light/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/greative/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/pitaya_smoothie/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/alabaster-0.7.16.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/click-8.1.7.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/idna-3.10.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/imagesize-1.4.1.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/jupyter_book/book_template/intro", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown-notebooks", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/jupyter_book/book_template/notebooks", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/AUTHORS", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/mdit_py_plugins/container/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/mdit_py_plugins/deflist/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/mdit_py_plugins/texmath/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/numpy/ma/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/numpy/random/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/pyzmq-25.1.2.dist-info/AUTHORS", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx-7.4.7.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/base", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/class", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/module", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx_book_theme/assets/translations/README", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/torchgen/packaged/autograd/README", "_sources/.vercel/output/static/README", "_sources/.vercel/output/static/chapters/Chapter 1 - Introduction to Machine Learning", "_sources/.vercel/output/static/chapters/Chapter 2 - Data Fundamentals", "_sources/.vercel/output/static/chapters/Chapter 3 - Supervised Learning", "_sources/.vercel/output/static/chapters/Chapter 4 - Unsupervised Learning", "_sources/.vercel/output/static/chapters/Chapter 5 - Neural Networks Basics", "_sources/.vercel/output/static/chapters/Chapter 6 - Deep Learning Tools", "_sources/.vercel/output/static/chapters/Chapter 7 - Convolutional Neural Networks", "_sources/.vercel/output/static/chapters/Chapter 8 - Sequential Data and RNNs", "_sources/.vercel/output/static/chapters/Chapter 9 - Modern Deep Learning", "_sources/.vercel/output/static/chapters/Introduction", "_sources/.vercel/output/static/projects/DeepSceneNet: Vision Transformer for Environmental Scene Understanding/code-file", "_sources/.vercel/output/static/projects/info", "_sources/node_modules/.pnpm/@[email protected]/node_modules/@vercel/analytics/README", "chapters/Chapter 1 - Introduction to Machine Learning", "chapters/Chapter 2 - Data Fundamentals", "chapters/Chapter 3 - Supervised Learning", "chapters/Chapter 4 - Unsupervised Learning", "chapters/Chapter 5 - Neural Networks Basics", "chapters/Chapter 6 - Deep Learning Tools", "chapters/Chapter 7 - Convolutional Neural Networks", "chapters/Chapter 8 - Sequential Data and RNNs", "chapters/Chapter 9 - Modern Deep Learning", "node_modules/.pnpm/@[email protected]/node_modules/@vercel/analytics/README"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1}, "filenames": [".conda/lib/python3.1/distutils/tests/includetest.rst", ".conda/lib/python3.1/email/architecture.rst", ".conda/lib/python3.1/site-packages/a11y_pygments/a11y_dark/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_dark/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_light/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/a11y_light/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/blinds_dark/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/blinds_light/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/github_dark/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/github_dark_colorblind/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/github_dark_high_contrast/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/github_light/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/github_light_colorblind/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/github_light_high_contrast/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/gotthard_dark/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/gotthard_light/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/greative/README.md", ".conda/lib/python3.1/site-packages/a11y_pygments/pitaya_smoothie/README.md", ".conda/lib/python3.1/site-packages/alabaster-0.7.16.dist-info/LICENSE.rst", ".conda/lib/python3.1/site-packages/click-8.1.7.dist-info/LICENSE.rst", ".conda/lib/python3.1/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README.md", ".conda/lib/python3.1/site-packages/idna-3.10.dist-info/LICENSE.md", ".conda/lib/python3.1/site-packages/imagesize-1.4.1.dist-info/LICENSE.rst", ".conda/lib/python3.1/site-packages/jupyter_book/book_template/intro.md", ".conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown.md", ".conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown-notebooks.md", ".conda/lib/python3.1/site-packages/jupyter_book/book_template/notebooks.ipynb", ".conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/AUTHORS.rst", ".conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/LICENSE.rst", ".conda/lib/python3.1/site-packages/mdit_py_plugins/container/README.md", ".conda/lib/python3.1/site-packages/mdit_py_plugins/deflist/README.md", ".conda/lib/python3.1/site-packages/mdit_py_plugins/texmath/README.md", ".conda/lib/python3.1/site-packages/numpy/ma/README.rst", ".conda/lib/python3.1/site-packages/numpy/random/LICENSE.md", ".conda/lib/python3.1/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS.rst", ".conda/lib/python3.1/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE.rst", ".conda/lib/python3.1/site-packages/pyzmq-25.1.2.dist-info/AUTHORS.md", ".conda/lib/python3.1/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE.md", ".conda/lib/python3.1/site-packages/sphinx-7.4.7.dist-info/LICENSE.rst", ".conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/base.rst", ".conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/class.rst", ".conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/module.rst", ".conda/lib/python3.1/site-packages/sphinx_book_theme/assets/translations/README.md", ".conda/lib/python3.1/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE.rst", ".conda/lib/python3.1/site-packages/torchgen/packaged/autograd/README.md", ".conda/lib/python3.11/distutils/tests/includetest.rst", ".conda/lib/python3.11/email/architecture.rst", ".conda/lib/python3.11/site-packages/a11y_pygments/a11y_dark/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_dark/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_light/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/a11y_light/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/blinds_dark/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/blinds_light/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/github_dark/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/github_dark_colorblind/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/github_dark_high_contrast/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/github_light/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/github_light_colorblind/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/github_light_high_contrast/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/gotthard_dark/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/gotthard_light/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/greative/README.md", ".conda/lib/python3.11/site-packages/a11y_pygments/pitaya_smoothie/README.md", ".conda/lib/python3.11/site-packages/alabaster-0.7.16.dist-info/LICENSE.rst", ".conda/lib/python3.11/site-packages/click-8.1.7.dist-info/LICENSE.rst", ".conda/lib/python3.11/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README.md", ".conda/lib/python3.11/site-packages/idna-3.10.dist-info/LICENSE.md", ".conda/lib/python3.11/site-packages/imagesize-1.4.1.dist-info/LICENSE.rst", ".conda/lib/python3.11/site-packages/jupyter_book/book_template/intro.md", ".conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown.md", ".conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown-notebooks.md", ".conda/lib/python3.11/site-packages/jupyter_book/book_template/notebooks.ipynb", ".conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/AUTHORS.rst", ".conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/LICENSE.rst", ".conda/lib/python3.11/site-packages/mdit_py_plugins/container/README.md", ".conda/lib/python3.11/site-packages/mdit_py_plugins/deflist/README.md", ".conda/lib/python3.11/site-packages/mdit_py_plugins/texmath/README.md", ".conda/lib/python3.11/site-packages/numpy/ma/README.rst", ".conda/lib/python3.11/site-packages/numpy/random/LICENSE.md", ".conda/lib/python3.11/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS.rst", ".conda/lib/python3.11/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE.rst", ".conda/lib/python3.11/site-packages/pyzmq-25.1.2.dist-info/AUTHORS.md", ".conda/lib/python3.11/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE.md", ".conda/lib/python3.11/site-packages/sphinx-7.4.7.dist-info/LICENSE.rst", ".conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/base.rst", ".conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/class.rst", ".conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/module.rst", ".conda/lib/python3.11/site-packages/sphinx_book_theme/assets/translations/README.md", ".conda/lib/python3.11/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE.rst", ".conda/lib/python3.11/site-packages/torchgen/packaged/autograd/README.md", "README.md", "_sources/.conda/lib/python3.1/distutils/tests/includetest.rst", "_sources/.conda/lib/python3.1/email/architecture.rst", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_dark/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_dark/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_light/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_light/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/blinds_dark/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/blinds_light/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark_colorblind/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark_high_contrast/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_light/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_light_colorblind/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/github_light_high_contrast/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/gotthard_dark/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/gotthard_light/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/greative/README.md", "_sources/.conda/lib/python3.1/site-packages/a11y_pygments/pitaya_smoothie/README.md", "_sources/.conda/lib/python3.1/site-packages/alabaster-0.7.16.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.1/site-packages/click-8.1.7.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.1/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README.md", "_sources/.conda/lib/python3.1/site-packages/idna-3.10.dist-info/LICENSE.md", "_sources/.conda/lib/python3.1/site-packages/imagesize-1.4.1.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.1/site-packages/jupyter_book/book_template/intro.md", "_sources/.conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown.md", "_sources/.conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown-notebooks.ipynb", "_sources/.conda/lib/python3.1/site-packages/jupyter_book/book_template/notebooks.ipynb", "_sources/.conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/AUTHORS.rst", "_sources/.conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.1/site-packages/mdit_py_plugins/container/README.md", "_sources/.conda/lib/python3.1/site-packages/mdit_py_plugins/deflist/README.md", "_sources/.conda/lib/python3.1/site-packages/mdit_py_plugins/texmath/README.md", "_sources/.conda/lib/python3.1/site-packages/numpy/ma/README.rst", "_sources/.conda/lib/python3.1/site-packages/numpy/random/LICENSE.md", "_sources/.conda/lib/python3.1/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS.rst", "_sources/.conda/lib/python3.1/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.1/site-packages/pyzmq-25.1.2.dist-info/AUTHORS.md", "_sources/.conda/lib/python3.1/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE.md", "_sources/.conda/lib/python3.1/site-packages/sphinx-7.4.7.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/base.rst", "_sources/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/class.rst", "_sources/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/module.rst", "_sources/.conda/lib/python3.1/site-packages/sphinx_book_theme/assets/translations/README.md", "_sources/.conda/lib/python3.1/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.1/site-packages/torchgen/packaged/autograd/README.md", "_sources/.conda/lib/python3.11/distutils/tests/includetest.rst", "_sources/.conda/lib/python3.11/email/architecture.rst", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_dark/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_dark/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_light/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_light/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/blinds_dark/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/blinds_light/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark_colorblind/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark_high_contrast/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_light/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_light_colorblind/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/github_light_high_contrast/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/gotthard_dark/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/gotthard_light/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/greative/README.md", "_sources/.conda/lib/python3.11/site-packages/a11y_pygments/pitaya_smoothie/README.md", "_sources/.conda/lib/python3.11/site-packages/alabaster-0.7.16.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.11/site-packages/click-8.1.7.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.11/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README.md", "_sources/.conda/lib/python3.11/site-packages/idna-3.10.dist-info/LICENSE.md", "_sources/.conda/lib/python3.11/site-packages/imagesize-1.4.1.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.11/site-packages/jupyter_book/book_template/intro.md", "_sources/.conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown.md", "_sources/.conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown-notebooks.ipynb", "_sources/.conda/lib/python3.11/site-packages/jupyter_book/book_template/notebooks.ipynb", "_sources/.conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/AUTHORS.rst", "_sources/.conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.11/site-packages/mdit_py_plugins/container/README.md", "_sources/.conda/lib/python3.11/site-packages/mdit_py_plugins/deflist/README.md", "_sources/.conda/lib/python3.11/site-packages/mdit_py_plugins/texmath/README.md", "_sources/.conda/lib/python3.11/site-packages/numpy/ma/README.rst", "_sources/.conda/lib/python3.11/site-packages/numpy/random/LICENSE.md", "_sources/.conda/lib/python3.11/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS.rst", "_sources/.conda/lib/python3.11/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.11/site-packages/pyzmq-25.1.2.dist-info/AUTHORS.md", "_sources/.conda/lib/python3.11/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE.md", "_sources/.conda/lib/python3.11/site-packages/sphinx-7.4.7.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/base.rst", "_sources/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/class.rst", "_sources/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/module.rst", "_sources/.conda/lib/python3.11/site-packages/sphinx_book_theme/assets/translations/README.md", "_sources/.conda/lib/python3.11/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE.rst", "_sources/.conda/lib/python3.11/site-packages/torchgen/packaged/autograd/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/distutils/tests/includetest.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/email/architecture.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_high_contrast_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/a11y_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/blinds_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/blinds_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark_colorblind/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_dark_high_contrast/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_light_colorblind/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/github_light_high_contrast/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/gotthard_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/gotthard_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/greative/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/a11y_pygments/pitaya_smoothie/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/alabaster-0.7.16.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/click-8.1.7.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/idna-3.10.dist-info/LICENSE.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/imagesize-1.4.1.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/jupyter_book/book_template/intro.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/jupyter_book/book_template/markdown-notebooks.ipynb", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/jupyter_book/book_template/notebooks.ipynb", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/AUTHORS.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/latexcodec-3.0.0.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/mdit_py_plugins/container/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/mdit_py_plugins/deflist/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/mdit_py_plugins/texmath/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/numpy/ma/README.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/numpy/random/LICENSE.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/pyzmq-25.1.2.dist-info/AUTHORS.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx-7.4.7.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/base.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/class.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx/ext/autosummary/templates/autosummary/module.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinx_book_theme/assets/translations/README.md", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.1/site-packages/torchgen/packaged/autograd/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/distutils/tests/includetest.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/email/architecture.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_high_contrast_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/a11y_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/blinds_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/blinds_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark_colorblind/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_dark_high_contrast/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_light_colorblind/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/github_light_high_contrast/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/gotthard_dark/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/gotthard_light/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/greative/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/a11y_pygments/pitaya_smoothie/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/alabaster-0.7.16.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/click-8.1.7.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/idna-3.10.dist-info/LICENSE.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/imagesize-1.4.1.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/jupyter_book/book_template/intro.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/jupyter_book/book_template/markdown-notebooks.ipynb", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/jupyter_book/book_template/notebooks.ipynb", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/AUTHORS.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/latexcodec-3.0.0.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/mdit_py_plugins/container/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/mdit_py_plugins/deflist/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/mdit_py_plugins/texmath/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/numpy/ma/README.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/numpy/random/LICENSE.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/prompt_toolkit-3.0.48.dist-info/AUTHORS.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/pybtex_docutils-1.0.3.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/pyzmq-25.1.2.dist-info/AUTHORS.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/soupsieve-2.6.dist-info/licenses/LICENSE.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx-7.4.7.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/base.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/class.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx/ext/autosummary/templates/autosummary/module.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinx_book_theme/assets/translations/README.md", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/sphinxcontrib_bibtex-2.6.3.dist-info/LICENSE.rst", "_sources/.vercel/output/static/.conda/lib/python3.11/site-packages/torchgen/packaged/autograd/README.md", "_sources/.vercel/output/static/README.md", "_sources/.vercel/output/static/chapters/Chapter 1 - Introduction to Machine Learning.ipynb", "_sources/.vercel/output/static/chapters/Chapter 2 - Data Fundamentals.ipynb", "_sources/.vercel/output/static/chapters/Chapter 3 - Supervised Learning.ipynb", "_sources/.vercel/output/static/chapters/Chapter 4 - Unsupervised Learning.ipynb", "_sources/.vercel/output/static/chapters/Chapter 5 - Neural Networks Basics.ipynb", "_sources/.vercel/output/static/chapters/Chapter 6 - Deep Learning Tools.ipynb", "_sources/.vercel/output/static/chapters/Chapter 7 - Convolutional Neural Networks.ipynb", "_sources/.vercel/output/static/chapters/Chapter 8 - Sequential Data and RNNs.ipynb", "_sources/.vercel/output/static/chapters/Chapter 9 - Modern Deep Learning.ipynb", "_sources/.vercel/output/static/chapters/Introduction.ipynb", "_sources/.vercel/output/static/projects/DeepSceneNet: Vision Transformer for Environmental Scene Understanding/code-file.ipynb", "_sources/.vercel/output/static/projects/info.md", "_sources/node_modules/.pnpm/@[email protected]/node_modules/@vercel/analytics/README.md", "chapters/Chapter 1 - Introduction to Machine Learning.ipynb", "chapters/Chapter 2 - Data Fundamentals.ipynb", "chapters/Chapter 3 - Supervised Learning.ipynb", "chapters/Chapter 4 - Unsupervised Learning.ipynb", "chapters/Chapter 5 - Neural Networks Basics.ipynb", "chapters/Chapter 6 - Deep Learning Tools.ipynb", "chapters/Chapter 7 - Convolutional Neural Networks.ipynb", "chapters/Chapter 8 - Sequential Data and RNNs.ipynb", "chapters/Chapter 9 - Modern Deep Learning.ipynb", "node_modules/.pnpm/@[email protected]/node_modules/@vercel/analytics/README.md"], "indexentries": {"rfc": [[1, "index-0", false], [1, "index-1", false], [46, "index-0", false], [46, "index-1", false], [92, "index-0", false], [92, "index-1", false], [137, "index-0", false], [137, "index-1", false], [182, "index-0", false], [182, "index-1", false], [227, "index-0", false], [227, "index-1", false]], "rfc 2616": [[1, "index-1", false], [46, "index-1", false], [92, "index-1", false], [137, "index-1", false], [182, "index-1", false], [227, "index-1", false]], "rfc 5322": [[1, "index-0", false], [46, "index-0", false], [92, "index-0", false], [137, "index-0", false], [182, "index-0", false], [227, "index-0", false]]}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [1, 2, 3, 4, 5, 17, 24, 25, 26, 29, 31, 32, 33, 36, 42, 46, 47, 48, 49, 50, 62, 69, 70, 71, 74, 76, 77, 78, 81, 87, 92, 93, 94, 95, 96, 108, 115, 116, 117, 120, 122, 123, 124, 127, 133, 137, 138, 139, 140, 141, 153, 160, 161, 162, 165, 167, 168, 169, 172, 178, 182, 183, 184, 185, 186, 198, 205, 206, 207, 210, 212, 213, 214, 217, 223, 227, 228, 229, 230, 231, 243, 250, 251, 252, 255, 257, 258, 259, 262, 268, 271, 272, 273, 282, 285, 286, 288, 289, 290, 291, 292], "0": [2, 6, 10, 11, 12, 13, 17, 26, 32, 36, 47, 51, 55, 56, 57, 58, 62, 71, 77, 81, 93, 97, 101, 102, 103, 104, 108, 117, 123, 127, 138, 142, 146, 147, 148, 149, 153, 162, 168, 172, 183, 187, 191, 192, 193, 194, 198, 207, 213, 217, 228, 232, 236, 237, 238, 239, 243, 252, 258, 262, 273, 274, 286, 287, 288, 289, 292], "000": [273, 274, 282, 286, 287, 289], "0000": 276, "000000": [7, 14, 52, 59, 98, 105, 143, 150, 188, 195, 233, 240], "0006": 276, "001": 276, "0012": 276, "0016": 276, "0017": 276, "0021": 276, "005": 276, "005b82": [4, 49, 95, 140, 185, 230], "00622f": [4, 49, 95, 140, 185, 230], "0069": 276, "0072b2": [7, 52, 98, 143, 188, 233], "00749c": [5, 50, 96, 141, 186, 231], "0084": 276, "008561": [7, 52, 98, 143, 188, 233], "0096": 276, "00e0e0": [2, 3, 47, 48, 93, 94, 138, 139, 183, 184, 228, 229], "01": [32, 77, 123, 168, 213, 258, 273, 274, 276, 286, 287], "010726": [16, 61, 107, 152, 197, 242], "0121": 276, "0128": 276, "0135": 276, "0161": 276, "0172": 276, "0181": 276, "0188": 276, "0193": 276, "02": 276, "0200": 276, "0213": 276, "0228": 276, "0234": 276, "023b95": [13, 58, 104, 149, 194, 239], "024c1a": [13, 58, 104, 149, 194, 239], "0255": 276, "0258": 276, "0274": 276, "0275": 276, "0279": 276, "0302": 276, "0303": 276, "0315": 276, "0332": 276, "0336": 276, "0340": 276, "0357": 276, "0367": 276, "0384": 276, "0387": 276, "0396": 276, "04": 276, "0416": 276, "0421": 276, "0428": 276, "0432": 276, "0434": 276, "0437": 276, "0442": 276, "0449": 276, "0453": 276, "0465": 276, "0467": 276, "0469": 276, "0485": 276, "0486": 276, "0492": 276, "0498": 276, "05": 276, "0503e": 276, "0527": 276, "0539": 276, "0543": 276, "0547": 276, "0550ae": [11, 12, 56, 57, 102, 103, 147, 148, 192, 193, 237, 238], "0553": 276, "0558": 276, "0559": 276, "0563": 276, "0566": 276, "0590": 276, "0601": 276, "0619": 276, "0625": 276, "0637": 276, "0656": 276, "0669": 276, "0678": 276, "0682": 276, "0684": 276, "0688": 276, "0707": 276, "0711": 276, "0720": 276, "0729": 276, "0731": 276, "0739": 276, "0742": 276, "0744": 276, "0752": 276, "0759": 276, "0762": 276, "0770": 276, "0771": 276, "0776": 276, "0799": 276, "08": [32, 77, 123, 168, 213, 258], "0802": 276, "0805": 276, "0807": 276, "080808": [4, 49, 95, 140, 185, 230], "0820": 276, "0832": 276, "0848": 276, "0860": 276, "0867": 276, "0885": 276, "0890": 276, "0892": 276, "0894": 276, "0895": 276, "0904": 276, "0905": 276, "0916": 276, "0925": 276, "0926": 276, "0942": 276, "0969da4a": [11, 12, 13, 56, 57, 58, 102, 103, 104, 147, 148, 149, 192, 193, 194, 237, 238, 239], "0975": 276, "0980": 276, "0983": 276, "0997": 276, "0999": 276, "0d": [273, 286], "0d1117": [8, 9, 10, 53, 54, 55, 99, 100, 101, 144, 145, 146, 189, 190, 191, 234, 235, 236], "1": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 26, 29, 31, 32, 36, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 71, 74, 76, 77, 81, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 117, 120, 122, 123, 127, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 162, 165, 167, 168, 172, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 207, 210, 212, 213, 217, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 252, 255, 257, 258, 262, 288, 291, 292], "10": [2, 3, 9, 13, 16, 26, 47, 48, 54, 58, 61, 71, 93, 94, 100, 104, 107, 117, 138, 139, 145, 149, 152, 162, 183, 184, 190, 194, 197, 207, 228, 229, 235, 239, 242, 252, 272, 273, 274, 276, 285, 286, 287, 288, 289, 291], "100": [26, 71, 117, 162, 207, 252, 272, 273, 274, 276, 285, 286, 287, 288], "1000": [274, 276, 287, 288, 289], "1000000": [273, 286], "1007": 276, "100k": [273, 286], "101": [274, 287], "1043": 276, "1058": 276, "1059": 276, "1069": 276, "1076": 276, "1084": 276, "1097": 276, "1099": 276, "10k": [274, 287], "10mb": 288, "10x10": 291, "11": [10, 55, 101, 146, 191, 236, 273, 276, 286], "110": [273, 286], "1105": 276, "1111": 276, "1117": 276, "1133": 276, "1139": 276, "1141": 276, "1145": 276, "1148": 276, "1149": 276, "1151": 276, "1156": 276, "1159": 276, "116329": [11, 56, 102, 147, 192, 237], "116633": [5, 50, 96, 141, 186, 231], "118": 276, "1186": 276, "1189": 276, "1193": 276, "1194": 276, "1199": 276, "12": [8, 9, 10, 17, 53, 54, 55, 62, 99, 100, 101, 108, 144, 145, 146, 153, 189, 190, 191, 198, 234, 235, 236, 243, 273, 276, 286, 288], "120": [274, 276, 287], "1200": [274, 287], "1202": 276, "1211": 276, "1218": 276, "1220": 276, "1224": 276, "123": [273, 286], "1231": 276, "1234": 276, "1237": 276, "124": 276, "1245": 276, "1262": 276, "1265": 276, "1275": 276, "1278": 276, "1281": 276, "1290": 276, "1296": 276, "1298": 276, "13": [2, 3, 10, 16, 47, 48, 55, 61, 93, 94, 101, 107, 138, 139, 146, 152, 183, 184, 191, 197, 228, 229, 236, 242, 273, 286], "1300": 276, "1302": 276, "1311": 276, "1312": 276, "1321": 276, "1337": 276, "1340": 276, "1347": 276, "1348": 276, "1353": 276, "1354": 276, "1355": 276, "1378": 276, "1388": 276, "1392": 276, "1397": 276, "14": [5, 10, 11, 12, 13, 50, 55, 56, 57, 58, 96, 101, 102, 103, 104, 141, 146, 147, 148, 149, 186, 191, 192, 193, 194, 231, 236, 237, 238, 239, 273, 276, 286], "1402": 276, "1406": 276, "1407": 276, "141": [274, 287], "1411": 276, "141414": [15, 60, 106, 151, 196, 241], "1417": 276, "1418": 276, "1421": 276, "1422": 276, "1423": 276, "1429": 276, "1446": 276, "1450": 276, "1460": 276, "1468": 276, "1495": 276, "15": [272, 273, 274, 276, 285, 286, 287, 288], "150": [273, 276, 286], "1500": [272, 285], "1503": 276, "1505": 276, "150x150": 282, "1516": 276, "1524": 276, "1525": 276, "1526": 276, "1528": 276, "1542": 276, "1543": 276, "1565": 276, "1566": 276, "1572": 276, "1575": 276, "1578": 276, "1585": 276, "16": [15, 60, 106, 151, 196, 241, 273, 274, 276, 286, 287, 291], "160": [273, 286], "1609": 276, "1627": 276, "1631": 276, "1636": 276, "1638": 276, "1639": 276, "1643": 276, "165": [273, 286], "1652": 276, "1658": 276, "167": [273, 286], "1672": 276, "168": [273, 286], "1680": 276, "169": [273, 286], "1690": 276, "1698e": 276, "1699": 276, "17": [17, 62, 108, 153, 198, 243], "170": [273, 286], "1715": 276, "172": [273, 286], "1720": 276, "1730": 276, "1736": 276, "1737": 276, "1738": 276, "175": [273, 286], "1756": 276, "1761": 276, "1778": 276, "1780": 276, "1796": 276, "18": [273, 274, 276, 286, 287], "180": [273, 286], "1801": 276, "180cm": [273, 286], "181036": [17, 62, 108, 153, 198, 243], "1811": 276, "1818": 276, "1825": 276, "1847": 276, "1848": 276, "1881": 276, "1894": 276, "1897": 276, "18c1c4": [17, 62, 108, 153, 198, 243], "19": [4, 14, 49, 59, 95, 105, 140, 150, 185, 195, 230, 240, 273, 286], "190": [273, 286], "1901": 276, "1905": 276, "1910": 276, "1919": 276, "1927": 276, "1934": 276, "1935": 276, "1939": 276, "1947": 276, "1955": 276, "1956": 276, "19680801": [26, 71, 117, 162, 207, 252], "1975": 276, "1981": 276, "1991": 276, "1994": 276, "1d": [273, 286, 288], "1e1e1": [5, 50, 96, 141, 186, 231], "1m": [273, 286], "1mb": 288, "1st": 288, "1x": 289, "1x1": 276, "1x10": 276, "1x5": 276, "1x8": 276, "2": [3, 8, 13, 15, 17, 25, 32, 48, 53, 58, 60, 62, 70, 77, 94, 99, 104, 106, 108, 116, 123, 139, 144, 149, 151, 153, 161, 168, 184, 189, 194, 196, 198, 206, 213, 229, 234, 239, 241, 243, 251, 258, 281, 288, 291, 292], "20": [7, 52, 98, 143, 188, 233, 272, 273, 274, 276, 285, 286, 287, 288], "200": [273, 274, 286, 287, 288], "2000": [274, 276, 287], "2004": 276, "2007": [32, 38, 77, 83, 123, 129, 168, 174, 213, 219, 258, 264], "2008": [38, 83, 129, 174, 219, 264], "2009": 276, "200g": [273, 286], "200k": [273, 286], "2010": [18, 63, 109, 154, 199, 244], "2011": [18, 28, 43, 63, 73, 88, 109, 119, 134, 154, 164, 179, 199, 209, 224, 244, 254, 269], "2013": [21, 35, 66, 80, 112, 126, 157, 171, 202, 216, 247, 261], "2014": [19, 64, 110, 155, 200, 245], "2016": [22, 67, 113, 158, 203, 248], "2018": [37, 82, 128, 173, 218, 263], "2019": [33, 78, 124, 169, 214, 259, 276], "2020": [18, 28, 63, 73, 109, 119, 154, 164, 199, 209, 244, 254], "2021": [35, 43, 80, 88, 126, 134, 171, 179, 216, 224, 261, 269], "2023": [273, 286], "2024": [21, 37, 38, 66, 82, 83, 112, 128, 129, 157, 173, 174, 202, 218, 219, 247, 263, 264], "2050": 276, "2051": 276, "2056": 276, "2072": 276, "2075": 276, "2085": 276, "20\u00b2": [274, 287], "21": [32, 77, 123, 168, 213, 258], "2109": 276, "210k": [273, 286], "2113": 276, "2119": 276, "2143": 276, "2165": 276, "2189": 276, "2201": 276, "2207": 276, "220k": [273, 286], "2216": 276, "2222": 276, "2232": 276, "2246": 276, "2247": 276, "225": [274, 287], "2254": 276, "2259": 276, "2261": 276, "2272": 276, "2281": 276, "23": [32, 77, 123, 168, 213, 258], "2314": 276, "2321": 276, "2330": 276, "2333": 276, "2341": 276, "2345": 276, "2349": 276, "2356": 276, "2357": 276, "2371": 276, "2373": 276, "2377": 276, "2380": 276, "2386": 276, "2387": 276, "2401": 276, "2402": 276, "240g": 288, "241": [274, 287], "2411": 276, "2414": 276, "2420": 276, "2422": 276, "242424": [6, 51, 97, 142, 187, 232], "2429": 276, "24292f": [11, 12, 13, 56, 57, 58, 102, 103, 104, 147, 148, 149, 192, 193, 194, 237, 238, 239], "2437": 276, "2443": 276, "245": 276, "2452": 276, "2477": 276, "2478": 276, "2488": 276, "2489": 276, "25": [32, 77, 123, 168, 213, 258, 273, 276, 282, 286, 288], "250": [273, 286], "2508": 276, "2510": 276, "252124": [27, 72, 118, 163, 208, 253], "255": [273, 286], "2555": 276, "256": 291, "2564": 276, "2567": 276, "2575": 276, "2594": 276, "2599": 276, "25th": [273, 286], "26": [31, 76, 122, 167, 212, 257, 273, 286], "2616": [1, 46, 92, 137, 182, 227], "2625": 276, "2630": 276, "2679": 276, "27": [273, 286], "2742": 276, "2766": 276, "2777": 276, "28": 276, "2822": 276, "2828e": 276, "2829": 276, "2852": 276, "2923": 276, "299": [273, 286], "2995": 276, "2a1968": [17, 62, 108, 153, 198, 243], "2b2b2b": [2, 3, 47, 48, 93, 94, 138, 139, 183, 184, 228, 229], "2d": [273, 286, 288, 290], "2f": 276, "2nd": 288, "2x": 289, "2x2": 291, "3": [2, 3, 5, 8, 9, 10, 14, 16, 21, 32, 47, 48, 50, 53, 54, 55, 59, 61, 66, 77, 93, 94, 96, 99, 100, 101, 105, 107, 112, 123, 138, 139, 141, 144, 145, 146, 150, 152, 157, 168, 183, 184, 186, 189, 190, 191, 195, 197, 202, 213, 228, 229, 231, 234, 235, 236, 240, 242, 247, 258, 272, 285, 288, 290, 291], "30": [90, 273, 274, 276, 286, 287, 288, 289], "300": [273, 274, 286, 287], "3000": [274, 276, 287], "30000": [273, 286], "300k": [273, 286], "3039": 276, "3063": 276, "3072": 276, "3089": 276, "30k": [273, 286], "31": 276, "3158": 276, "32": 276, "3210": 276, "3217": 276, "325": 289, "3268": 276, "32k": [273, 286], "33": 288, "3333": 276, "3354": 276, "3355": 276, "3390": 276, "34": [32, 77, 123, 168, 213, 258], "3410": 276, "342": 276, "3420": 276, "3424": 276, "3425": 276, "3435": 276, "3453": 276, "3482": 276, "3483": 276, "35": [273, 286, 288], "3523": 276, "35k": [273, 286], "36": [273, 276, 286], "3640": 276, "3651": 276, "3688": 276, "3748": 276, "375": [273, 286, 289], "3751": 276, "3817": 276, "3917": 276, "3951": 276, "3954": 276, "3989": 276, "3997": 276, "3d": [273, 286, 288, 290], "3d73a9": [15, 60, 106, 151, 196, 241], "3g": 288, "3x": 289, "3x3": 291, "4": [4, 5, 6, 7, 11, 12, 14, 15, 16, 17, 26, 32, 49, 50, 51, 52, 56, 57, 59, 60, 61, 62, 71, 77, 95, 96, 97, 98, 102, 103, 105, 106, 107, 108, 117, 123, 140, 141, 142, 143, 147, 148, 150, 151, 152, 153, 162, 168, 185, 186, 187, 188, 192, 193, 195, 196, 197, 198, 207, 213, 230, 231, 232, 233, 237, 238, 240, 241, 242, 243, 252, 258, 271, 272, 285, 291, 292], "40": [273, 274, 276, 286, 287, 288], "400": [273, 274, 286, 287], "400g": [273, 286], "40k": [273, 286], "41": 276, "4123": 276, "4134": 276, "42": [274, 287], "4205": 276, "4206505998": 276, "4225": 276, "4257": 276, "432": 276, "4321": 276, "434": 276, "4340": 276, "437a6b": [15, 60, 106, 151, 196, 241], "4396": 276, "4410": 276, "4444": 276, "45": [273, 274, 286, 287, 288], "4533": 276, "4567": [273, 276, 286], "4576": 276, "45g": 288, "45k": [273, 286], "46": 276, "4731": 276, "473d18": [16, 61, 107, 152, 197, 242], "4823": 276, "48k": [273, 286], "4961e": 276, "4c4b4be8": [14, 59, 105, 150, 195, 240], "4d": [273, 286], "4f": 276, "5": [1, 4, 6, 7, 8, 11, 12, 13, 15, 16, 17, 26, 32, 46, 49, 51, 52, 53, 56, 57, 58, 60, 61, 62, 71, 77, 92, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108, 117, 123, 137, 140, 142, 143, 144, 147, 148, 149, 151, 152, 153, 162, 168, 182, 185, 187, 188, 189, 192, 193, 194, 196, 197, 198, 207, 213, 227, 230, 232, 233, 234, 237, 238, 239, 241, 242, 243, 252, 258, 271, 272, 285, 288, 291], "50": [273, 274, 276, 286, 287, 288], "500": [274, 287, 288], "5000": 288, "50000": [273, 286], "500k": [273, 286], "50k": [273, 274, 286, 287], "50th": [273, 286], "51": [273, 286], "5112": 276, "515151": [4, 5, 49, 50, 95, 96, 140, 141, 185, 186, 230, 231], "5165": 276, "52k": [273, 286], "5322": [1, 46, 92, 137, 182, 227], "5330": 276, "5335": [1, 46, 92, 137, 182, 227], "5367": 276, "5391cf": [6, 51, 97, 142, 187, 232], "5403": 276, "543": 276, "5430": 276, "5432": 276, "5457": 276, "55": [32, 77, 123, 168, 213, 258, 288], "555": [273, 286], "5555": 276, "56": 276, "5669e": 276, "5678": 276, "58a6ff70": [9, 10, 54, 55, 100, 101, 145, 146, 190, 191, 235, 236], "5982": 276, "5ca7e4": [16, 61, 107, 152, 197, 242], "5x": 276, "5x5": 291, "5x6": 276, "6": [2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 47, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 93, 94, 96, 97, 98, 99, 100, 102, 103, 105, 106, 107, 108, 138, 139, 141, 142, 143, 144, 145, 147, 148, 150, 151, 152, 153, 183, 184, 186, 187, 188, 189, 190, 192, 193, 195, 196, 197, 198, 228, 229, 231, 232, 233, 234, 235, 237, 238, 240, 241, 242, 243, 271, 273, 274, 282, 286, 287, 288, 291], "60": [273, 274, 276, 286, 287, 288], "600": [273, 274, 286, 287], "60000": [273, 286], "622cbc": [13, 58, 104, 149, 194, 239], "64": 276, "65": [273, 286, 288], "6509": 276, "6543": 276, "6609": 276, "6666": 276, "66666691": [6, 51, 97, 142, 187, 232], "66707b": [13, 58, 104, 149, 194, 239], "66ccee": [6, 51, 97, 142, 187, 232], "66e9ec": [17, 62, 108, 153, 198, 243], "67": [274, 276, 287, 288], "6730c5": [4, 49, 95, 140, 185, 230], "678": 276, "6789": 276, "69": [32, 77, 123, 168, 213, 258], "6900": 276, "6e7681": [8, 53, 99, 144, 189, 234], "6e7781": [11, 12, 56, 57, 102, 103, 147, 148, 192, 193, 237, 238], "6f98b3": [14, 59, 105, 150, 195, 240], "7": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 93, 94, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 138, 139, 140, 141, 142, 144, 145, 147, 148, 149, 150, 151, 152, 183, 184, 185, 186, 187, 189, 190, 192, 193, 194, 195, 196, 197, 228, 229, 230, 231, 232, 234, 235, 237, 238, 239, 240, 241, 242, 271, 273, 274, 276, 286, 287, 289], "70": [273, 274, 276, 286, 287, 288], "700": [273, 274, 286, 287], "702c00": [13, 58, 104, 149, 194, 239], "70k": [273, 286], "7154": 276, "72": [273, 274, 276, 286, 287], "72f088": [10, 55, 101, 146, 191, 236], "73": [274, 276, 287], "737373": [7, 52, 98, 143, 188, 233], "74": [273, 286], "7492e": 276, "75": [272, 273, 274, 285, 286, 287, 288], "75000": [273, 286], "75th": [273, 286], "7634": 276, "7651": 276, "77": [274, 287], "7796": 276, "7890": 276, "797979": [16, 61, 107, 152, 197, 242], "7998f2": [17, 62, 108, 153, 198, 243], "79c0ff": [8, 9, 53, 54, 99, 100, 144, 145, 189, 190, 234, 235], "7bit": [1, 46, 92, 137, 182, 227], "7ee787": [8, 53, 99, 144, 189, 234], "7f4707": [4, 5, 49, 50, 95, 96, 140, 141, 185, 186, 230, 231], "8": [2, 3, 5, 6, 8, 10, 12, 13, 14, 16, 17, 31, 47, 48, 50, 51, 53, 55, 57, 58, 59, 61, 62, 76, 93, 94, 96, 97, 99, 101, 103, 104, 105, 107, 108, 122, 138, 139, 141, 142, 144, 146, 148, 149, 150, 152, 153, 167, 183, 184, 186, 187, 189, 191, 193, 194, 195, 197, 198, 212, 228, 229, 231, 232, 234, 236, 238, 239, 240, 242, 243, 257, 271, 273, 274, 276, 286, 287, 288, 289, 290, 291], "80": [273, 274, 276, 286, 287, 288], "8045e5": [5, 50, 96, 141, 186, 231], "81": 276, "8131": 276, "81b19b": [14, 59, 105, 150, 195, 240], "8250df": [11, 12, 56, 57, 102, 103, 147, 148, 192, 193, 237, 238], "8420": 276, "85": [273, 274, 276, 286, 287, 288], "86": [36, 81, 127, 172, 217, 262, 273, 286], "87": [273, 286], "87509": 276, "8751": 276, "8765": 276, "8786ac": [17, 62, 108, 153, 198, 243], "88": [273, 286], "89": [273, 286], "8976": 276, "8a4600": [12, 57, 103, 148, 193, 238], "8b949e": [8, 53, 99, 144, 189, 234], "8bit": [1, 46, 92, 137, 182, 227], "8c8c8c": [6, 51, 97, 142, 187, 232], "8m": [273, 286], "8x8": 291, "9": [2, 3, 4, 5, 8, 9, 10, 14, 15, 16, 17, 47, 48, 49, 50, 53, 54, 55, 59, 60, 61, 62, 93, 94, 95, 96, 99, 100, 101, 105, 106, 107, 108, 138, 139, 140, 141, 144, 145, 146, 150, 151, 152, 153, 183, 184, 185, 186, 189, 190, 191, 195, 196, 197, 198, 228, 229, 230, 231, 234, 235, 236, 240, 241, 242, 243, 271, 272, 273, 274, 285, 286, 287], "90": [272, 273, 274, 285, 286, 287, 288], "900k": [273, 286], "9012": 276, "9026": 276, "91": [32, 77, 123, 168, 213, 258], "912583": [4, 49, 95, 140, 185, 230], "91cbff": [10, 55, 101, 146, 191, 236], "92": [273, 286], "935": [274, 287], "9413": 276, "95": [273, 274, 286, 287, 288], "953800": [11, 56, 102, 147, 192, 237], "974eb7": [15, 60, 106, 151, 196, 241], "98": [273, 286], "98661b": [15, 60, 106, 151, 196, 241], "9876": 276, "99": [273, 286], "9916": 276, "996b00": [7, 52, 98, 143, 188, 233], "9975": 276, "999": [273, 286], "999999": [32, 77, 123, 168, 213, 258], "9e86c8": [16, 61, 107, 152, 197, 242], "9e8741": [16, 61, 107, 152, 197, 242], "9f4e55": [15, 60, 106, 151, 196, 241], "A": [1, 18, 19, 21, 22, 28, 33, 35, 36, 37, 38, 43, 46, 63, 64, 66, 67, 73, 78, 80, 81, 82, 83, 88, 90, 92, 109, 110, 112, 113, 119, 124, 126, 127, 128, 129, 134, 137, 154, 155, 157, 158, 164, 169, 171, 172, 173, 174, 179, 182, 199, 200, 202, 203, 209, 214, 216, 217, 218, 219, 224, 227, 244, 245, 247, 248, 254, 259, 261, 262, 263, 264, 269, 271, 272, 273, 274, 285, 286, 287, 288, 289, 290, 291, 292], "AND": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269, 274, 276, 287], "AS": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "AT": [34, 36, 79, 81, 125, 127, 170, 172, 215, 217, 260, 262], "And": 288, "As": [1, 26, 32, 46, 71, 77, 92, 117, 123, 137, 162, 168, 182, 207, 213, 227, 252, 258, 276, 289, 291, 292], "At": [1, 46, 92, 137, 182, 227, 289, 292], "BE": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "BUT": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "BY": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "Be": [273, 286], "But": [26, 71, 117, 162, 207, 252, 274, 276, 287, 288, 289, 290], "By": [32, 77, 123, 168, 213, 258, 276, 288, 289, 290, 291, 292], "FOR": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "For": [1, 24, 26, 32, 46, 69, 71, 77, 92, 115, 117, 123, 137, 160, 162, 168, 182, 205, 207, 213, 227, 250, 252, 258, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "IF": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "IN": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "If": [1, 25, 29, 30, 32, 44, 46, 70, 74, 75, 77, 89, 90, 92, 116, 120, 121, 123, 135, 137, 161, 165, 166, 168, 180, 182, 206, 210, 211, 213, 225, 227, 251, 255, 256, 258, 270, 271, 272, 273, 276, 281, 284, 285, 286, 288, 289, 290, 291, 292, 294], "In": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "It": [1, 23, 24, 46, 68, 69, 92, 114, 115, 137, 159, 160, 182, 204, 205, 227, 249, 250, 272, 274, 285, 287, 288, 289, 290, 291, 292], "Its": [1, 46, 92, 137, 182, 227], "NO": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269, 274, 287], "NOT": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "Near": 288, "No": [32, 77, 90, 123, 168, 213, 258, 271, 273, 274, 276, 286, 287, 288, 289], "Not": [273, 274, 276, 286, 287, 288], "OF": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "ON": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 274, 276, 287], "ONE": [274, 287], "OR": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "Of": 90, "On": [273, 286, 289, 290], "One": [1, 46, 92, 137, 182, 227, 274, 287, 288, 289, 290, 291, 292], "Or": [273, 286, 289], "SUCH": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "THE": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "TO": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "That": [25, 70, 116, 161, 206, 251, 274, 276, 287, 289], "The": [18, 20, 24, 25, 28, 31, 32, 33, 35, 36, 37, 38, 42, 63, 65, 69, 70, 73, 76, 77, 78, 80, 81, 82, 83, 87, 109, 111, 115, 116, 119, 122, 123, 124, 126, 127, 128, 129, 133, 154, 156, 160, 161, 164, 167, 168, 169, 171, 172, 173, 174, 178, 199, 201, 205, 206, 209, 212, 213, 214, 216, 217, 218, 219, 223, 244, 246, 250, 251, 254, 257, 258, 259, 261, 262, 263, 264, 268, 271, 273, 274, 282, 286, 287, 288, 289, 290, 291, 292], "Then": 291, "There": [1, 26, 46, 71, 92, 117, 137, 162, 182, 207, 227, 252, 271, 274, 281, 287, 289, 291], "These": [42, 87, 133, 178, 223, 268, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "To": [20, 32, 65, 77, 111, 123, 156, 168, 201, 213, 246, 258, 271, 276, 284, 289, 290, 291, 292, 294], "WITH": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "Will": [274, 287], "With": [25, 29, 70, 74, 116, 120, 161, 165, 206, 210, 251, 255, 274, 276, 287, 289, 291], "___": [273, 286], "__array_finalize__": [32, 77, 123, 168, 213, 258], "__getattribute__": [32, 77, 123, 168, 213, 258], "__import__": [20, 65, 111, 156, 201, 246], "__init__": [20, 65, 111, 156, 201, 246], "__name__": [20, 65, 111, 156, 201, 246], "__new__": [32, 77, 123, 168, 213, 258], "__path__": [20, 65, 111, 156, 201, 246], "__setitem__": [1, 46, 92, 137, 182, 227], "_compile_transl": [42, 87, 133, 178, 223, 268], "_data": [32, 77, 123, 168, 213, 258], "_mask": [32, 77, 123, 168, 213, 258], "_parse_numpydoc_see_also_sect": [38, 83, 129, 174, 219, 264], "_pydevd_bundl": [20, 65, 111, 156, 201, 246], "a0111f": [13, 58, 104, 149, 194, 239], "a11": [3, 17, 48, 62, 94, 108, 139, 153, 184, 198, 229, 243], "a12236": [4, 49, 95, 140, 185, 230], "a25e53": [15, 60, 106, 151, 196, 241], "a2bffc": [16, 61, 107, 152, 197, 242], "a5d6ff": [9, 54, 100, 145, 190, 235], "aa": [5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 141, 142, 143, 144, 147, 148, 149, 150, 151, 152, 153, 186, 187, 188, 189, 192, 193, 194, 195, 196, 197, 198, 231, 232, 233, 234, 237, 238, 239, 240, 241, 242, 243], "aaa": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243], "ab": [273, 286], "ab6369": [14, 59, 105, 150, 195, 240], "abe338": [2, 3, 47, 48, 93, 94, 138, 139, 183, 184, 228, 229], "abil": [271, 272, 273, 276, 285, 286, 288, 289, 292], "abl": [1, 46, 92, 137, 182, 227, 276, 289, 291, 292], "about": [1, 24, 25, 26, 46, 69, 70, 71, 92, 115, 116, 117, 137, 160, 161, 162, 182, 205, 206, 207, 227, 250, 251, 252, 272, 273, 274, 276, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294], "abov": [1, 18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 46, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 92, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 137, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 182, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 227, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269, 271, 273, 274, 286, 287, 288], "abramowitz": [36, 81, 127, 172, 217, 262], "absent": [273, 286], "absolut": [273, 276, 286], "abstract": [20, 65, 111, 156, 201, 246], "aburn": [36, 81, 127, 172, 217, 262], "ac": [33, 36, 78, 81, 124, 127, 169, 172, 214, 217, 259, 262], "academ": [273, 286], "acc": 276, "acceler": [271, 276], "accept": [24, 32, 69, 77, 115, 123, 160, 168, 205, 213, 250, 258], "access": [1, 2, 3, 4, 5, 17, 46, 47, 48, 49, 50, 62, 92, 93, 94, 95, 96, 108, 137, 138, 139, 140, 141, 153, 182, 183, 184, 185, 186, 198, 227, 228, 229, 230, 231, 243, 290], "accessori": 288, "accident": [273, 286], "accord": [1, 46, 92, 137, 182, 227, 292], "accordingli": 289, "account": [32, 77, 123, 168, 213, 258, 273, 274, 286, 287, 292], "accumul": 276, "accur": [272, 276, 285, 287, 288, 289, 290, 291, 292], "accuraci": [272, 282, 285, 288, 289, 290, 292], "achiev": [272, 285, 290], "across": [90, 273, 282, 286, 288, 289, 290, 291, 292], "act": [1, 46, 92, 137, 182, 227, 272, 274, 276, 285, 287, 288, 289, 291, 292], "action": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263, 273, 274, 286, 287, 288, 290, 291, 292], "activ": [271, 273, 286, 288, 291, 292], "activest": [27, 72, 118, 163, 208, 253], "actor": 288, "actual": [32, 77, 123, 168, 213, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "actual_tim": 276, "ad": [32, 77, 123, 168, 213, 258, 273, 274, 276, 286, 287, 289, 290, 291, 292], "adagrad": 276, "adam": 276, "adamw": 276, "adapt": [276, 289, 290, 291], "add": [20, 30, 31, 42, 44, 65, 75, 76, 87, 89, 90, 111, 121, 122, 133, 135, 156, 166, 167, 178, 180, 201, 211, 212, 223, 225, 246, 256, 257, 268, 270, 273, 274, 276, 282, 284, 286, 287, 288, 289, 290, 291, 292, 294], "add6ff": [7, 52, 98, 143, 188, 233], "add_": [26, 71, 117, 162, 207, 252], "add_custom_command": [44, 89, 135, 180, 225, 270], "add_edg": 276, "add_nod": 276, "add_patch": 276, "addeventlisten": [31, 76, 122, 167, 212, 257], "addit": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 276, 289, 290], "addition": 291, "addmmbackward0": 276, "address": [274, 287], "adjust": [36, 81, 127, 172, 217, 262, 272, 273, 274, 276, 285, 286, 287, 288, 290, 291, 292], "adult": [273, 274, 286, 287], "advanc": [274, 287, 288], "adventur": [274, 287, 288], "advic": [273, 274, 286, 287, 289], "advis": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "ae": [36, 81, 127, 172, 217, 262], "affect": [272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "after": [1, 29, 46, 74, 92, 120, 137, 165, 182, 210, 227, 255, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "afterward": 291, "ag": [272, 273, 274, 276, 285, 286, 287, 288, 289], "again": [32, 77, 123, 168, 213, 258, 271, 276, 289], "age_bin": [273, 286], "agenc": [274, 287], "agglom": 288, "aggress": 276, "ago": 292, "agre": 289, "ai": [90, 271, 272, 285, 290], "aid": 288, "aim": [276, 289], "aimlessli": 289, "air": 289, "airport": 292, "aisl": [288, 289], "akin": [276, 290, 291, 292], "album": [273, 286, 288], "alert": [272, 285], "alexa": 289, "alexand": [36, 81, 127, 172, 217, 262], "alexandr": [36, 81, 127, 172, 217, 262], "algebra": [273, 286], "algorithm": [33, 78, 124, 169, 214, 259, 271, 272, 285, 289, 290], "ali": [36, 81, 127, 172, 217, 262], "alic": [273, 274, 286, 287], "align": [26, 71, 117, 162, 207, 252, 291], "aliv": [274, 276, 287], "all": [1, 21, 22, 24, 25, 28, 32, 33, 35, 36, 37, 38, 43, 46, 66, 67, 69, 70, 73, 77, 78, 80, 81, 82, 83, 88, 90, 92, 112, 113, 115, 116, 119, 123, 124, 126, 127, 128, 129, 134, 137, 157, 158, 160, 161, 164, 168, 169, 171, 172, 173, 174, 179, 182, 202, 203, 205, 206, 209, 213, 214, 216, 217, 218, 219, 224, 227, 247, 248, 250, 251, 254, 258, 259, 261, 262, 263, 264, 269, 271, 272, 273, 274, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294], "allei": 288, "allow": [1, 20, 24, 46, 65, 69, 92, 111, 115, 137, 156, 160, 182, 201, 205, 227, 246, 250, 276, 281, 284, 287, 288, 289, 290, 291, 292, 294], "almost": [1, 46, 92, 137, 182, 227, 274, 276, 287, 289, 291], "alon": [274, 276, 287, 288, 290], "along": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 276, 289, 292], "alongsid": 290, "alpha": 276, "alreadi": [1, 31, 46, 76, 92, 122, 137, 167, 182, 212, 227, 257, 276, 281, 289, 290, 291, 292], "also": [1, 24, 25, 26, 32, 46, 69, 70, 71, 77, 92, 115, 116, 117, 123, 137, 160, 161, 162, 168, 182, 205, 206, 207, 213, 227, 250, 251, 252, 258, 271, 276, 282, 288, 289, 290, 291], "alter": 290, "altern": [32, 77, 123, 168, 213, 258], "alwai": [32, 77, 123, 168, 213, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 291, 292], "am": 288, "amazon": 271, "ambianc": 288, "ami": 288, "amjith": [34, 79, 125, 170, 215, 260], "among": [273, 276, 286, 290], "amount": [271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "amr": [36, 81, 127, 172, 217, 262], "amus": [274, 287], "an": [1, 22, 24, 28, 31, 32, 33, 35, 36, 37, 46, 67, 69, 73, 76, 77, 78, 80, 81, 82, 90, 92, 113, 115, 119, 122, 123, 124, 126, 127, 128, 137, 158, 160, 164, 167, 168, 169, 171, 172, 173, 182, 203, 205, 209, 212, 213, 214, 216, 217, 218, 227, 248, 250, 254, 257, 258, 259, 261, 262, 263, 271, 272, 273, 274, 281, 282, 285, 286, 287, 288, 289, 290, 291, 292], "analogi": [90, 271, 273, 286, 290, 291], "analysi": [271, 276, 287, 291, 292], "analyt": [284, 294], "analyz": [272, 282, 285, 287, 289, 291, 292], "andr": [36, 81, 127, 172, 217, 262], "andrea": [36, 81, 127, 172, 217, 262], "andrew": [36, 81, 127, 172, 217, 262], "angl": [273, 286, 288, 291], "ani": [1, 18, 19, 21, 22, 23, 25, 28, 32, 33, 35, 37, 38, 43, 46, 63, 64, 66, 67, 68, 70, 73, 77, 78, 80, 82, 83, 88, 90, 92, 109, 110, 112, 113, 114, 116, 119, 123, 124, 126, 128, 129, 134, 137, 154, 155, 157, 158, 159, 161, 164, 168, 169, 171, 173, 174, 179, 182, 199, 200, 202, 203, 204, 206, 209, 213, 214, 216, 218, 219, 224, 227, 244, 245, 247, 248, 249, 251, 254, 258, 259, 261, 263, 264, 269, 272, 273, 274, 276, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294], "anim": [273, 276, 286, 287, 288, 289, 290, 291, 292], "animal_nam": 276, "announc": 289, "anom": [32, 77, 123, 168, 213, 258], "anomali": [32, 77, 123, 168, 213, 258], "anoth": [29, 32, 74, 77, 120, 123, 165, 168, 210, 213, 255, 258, 272, 276, 285, 288, 289, 290, 291, 292], "answer": [272, 273, 274, 276, 285, 286, 287, 289, 290, 292, 293], "antoin": [36, 81, 127, 172, 217, 262], "anymor": 292, "anyon": [288, 290], "anyth": [274, 287, 289, 291, 292], "anywai": [32, 77, 123, 168, 213, 258], "anywher": 288, "apart": [32, 77, 123, 168, 213, 258, 274, 287, 288, 292], "apgwoz": [36, 81, 127, 172, 217, 262], "api": [1, 46, 92, 137, 182, 227, 276, 290], "app": [276, 284, 289, 290, 291, 294], "appeal": [288, 290], "appear": [273, 286, 288, 292], "append": 276, "appet": [274, 287], "appl": [273, 274, 276, 286, 287, 291, 292], "appli": [273, 274, 276, 286, 287, 289, 291], "applianc": [274, 287, 290], "applic": [1, 46, 92, 137, 182, 227, 271, 276, 290, 292], "approach": [90, 271, 272, 274, 276, 282, 285, 287, 288, 290, 291, 292, 293], "appropri": [1, 46, 92, 137, 182, 227, 272, 273, 274, 276, 285, 286, 287, 289], "apyhalov": [36, 81, 127, 172, 217, 262], "ar": [1, 18, 19, 21, 24, 25, 32, 33, 38, 42, 43, 46, 63, 64, 66, 69, 70, 77, 78, 83, 87, 88, 92, 109, 110, 112, 115, 116, 123, 124, 129, 133, 134, 137, 154, 155, 157, 160, 161, 168, 169, 174, 178, 179, 182, 199, 200, 202, 205, 206, 213, 214, 219, 223, 224, 227, 244, 245, 247, 250, 251, 258, 259, 264, 268, 269, 272, 273, 274, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294], "arbitrarili": [1, 46, 92, 137, 182, 227, 276], "architect": 290, "architectur": 271, "area": [32, 77, 123, 168, 213, 258, 274, 287, 288, 289, 290, 291], "aren": [276, 289, 292], "argmax": 276, "argu": [32, 77, 123, 168, 213, 258], "argument": 276, "aris": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "arithmet": 290, "armin": [18, 63, 109, 154, 199, 244], "around": [1, 46, 92, 137, 182, 227, 274, 276, 282, 287, 288, 289, 290, 291, 292], "arrai": [26, 71, 117, 162, 207, 252, 276, 290], "arrang": [274, 287, 288, 290, 291, 292], "arriv": [274, 276, 287, 289, 292], "arrow": 288, "art": [276, 288], "artarisi": [36, 81, 127, 172, 217, 262], "articl": [272, 285, 287, 288, 292], "artifici": [271, 272, 285, 292], "artist": [274, 287, 289, 291], "ar\u021b\u0103ri\u0219i": [36, 81, 127, 172, 217, 262], "ascii": [1, 46, 92, 137, 182, 227], "asian": [274, 287], "asid": 290, "ask": [273, 274, 276, 286, 287, 292], "aspect": [272, 274, 276, 282, 285, 287, 288, 289, 290, 291], "asphalt": 289, "assembl": [290, 291], "assembli": [274, 276, 287, 289, 290], "assess": [290, 291], "asset": [42, 87, 133, 178, 223, 268], "assign": [273, 286, 288, 291, 292], "assist": [271, 289], "associ": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263, 271, 292], "assum": [42, 87, 133, 178, 223, 268, 274, 276, 287], "athlet": [273, 276, 286, 288, 290], "attempt": [276, 289], "attend": [273, 286, 288, 292], "attent": [271, 276, 282, 289], "attic": 292, "attribut": [32, 77, 123, 168, 213, 258, 287], "au": [36, 81, 127, 172, 217, 262], "audibl": 289, "audienc": [271, 273, 274, 286, 287], "audio": [289, 293], "augment": 282, "aunt": 288, "austin": [36, 81, 127, 172, 217, 262], "author": [22, 27, 28, 31, 35, 37, 38, 67, 72, 73, 76, 80, 82, 83, 113, 118, 119, 122, 126, 128, 129, 158, 163, 164, 167, 171, 173, 174, 203, 208, 209, 212, 216, 218, 219, 248, 253, 254, 257, 261, 263, 264, 288], "auto": [42, 87, 133, 178, 223, 268, 289], "automat": [42, 87, 133, 178, 223, 268, 272, 273, 284, 285, 286, 290, 294], "autonom": [276, 290, 291], "autoregress": 293, "avail": [32, 77, 123, 168, 213, 258, 272, 273, 276, 282, 285, 286, 291], "averag": [32, 77, 123, 168, 213, 258, 273, 274, 276, 286, 287, 288, 291], "avoid": [31, 32, 76, 77, 90, 122, 123, 167, 168, 212, 213, 257, 258, 271, 273, 274, 276, 286, 287, 288, 289, 291], "awai": [276, 292], "awar": [1, 46, 92, 137, 182, 227], "ax": [26, 71, 117, 162, 207, 252, 273, 276, 286], "axi": 276, "axon": [36, 81, 127, 172, 217, 262], "b": [273, 274, 286, 287, 288], "b0": 276, "b19db4": [14, 59, 105, 150, 195, 240], "b1bac4": [9, 54, 100, 145, 190, 235], "b35900": [12, 57, 103, 148, 193, 238], "b89784": [14, 59, 105, 150, 195, 240], "bachelor": [273, 286], "back": [1, 46, 92, 137, 182, 227, 272, 273, 276, 285, 286, 288, 289, 290, 291, 292], "backend": [35, 80, 126, 171, 216, 261], "background": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 288, 291], "backpack": 276, "backpropag": [289, 292], "backslash": [31, 76, 122, 167, 212, 257], "backup": 276, "backward": [271, 273, 276, 286], "bad": [273, 274, 276, 286, 287, 288, 292], "badli": [1, 46, 92, 137, 182, 227], "bag": [273, 276, 286, 288, 292], "bah": [36, 81, 127, 172, 217, 262], "bailei": [2, 3, 4, 5, 17, 47, 48, 49, 50, 62, 93, 94, 95, 96, 108, 138, 139, 140, 141, 153, 183, 184, 185, 186, 198, 228, 229, 230, 231, 243], "bake": [272, 273, 274, 276, 285, 286, 288, 289, 290, 292], "baker": 289, "bakeri": 289, "balanc": [274, 287, 288, 289, 290, 291, 292], "ball": [289, 290], "baller": [273, 286], "balloon": 276, "banana": [274, 276, 287, 291, 292], "band": [274, 287, 288], "bank": [36, 81, 127, 172, 217, 262, 274, 287, 288], "baptist": [36, 81, 127, 172, 217, 262], "bar": [276, 289], "bare": [274, 287, 289], "bargain": 288, "barn": [274, 287], "base": [18, 20, 25, 30, 32, 63, 65, 70, 75, 77, 109, 111, 116, 121, 123, 154, 156, 161, 166, 168, 199, 201, 206, 211, 213, 244, 246, 251, 256, 258, 271, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "basebal": 292, "baselin": 288, "bash": 271, "basic": [90, 271, 272, 282, 285], "basket": [274, 276, 287, 291], "basketbal": [273, 276, 286, 288, 289], "bat": 292, "batch": [274, 276, 287, 292], "batch_input": 276, "batch_siz": 276, "bath_label": 276, "bathroom": [272, 285], "batter": 289, "batteri": [273, 286, 290], "bbbbbb": [6, 51, 97, 142, 187, 232], "beach": [274, 287, 288, 291], "beak": 289, "beam": 293, "bean": 289, "bear": [36, 81, 127, 172, 217, 262, 288], "beat": 292, "beauti": [31, 76, 122, 167, 212, 257, 272, 274, 285, 287, 289], "becam": [32, 77, 123, 168, 213, 258], "becaus": [271, 272, 274, 276, 285, 287, 288, 289, 290, 291, 292], "becom": [32, 77, 123, 168, 213, 258, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291], "bedroom": [272, 274, 285, 287], "bee": 291, "been": [32, 33, 77, 78, 123, 124, 168, 169, 213, 214, 258, 259, 276, 289, 290, 291], "beer": 288, "befor": [272, 273, 274, 285, 286, 287, 288, 289, 290, 291, 292], "beforehand": [32, 77, 123, 168, 213, 258], "begin": [26, 71, 117, 162, 207, 252, 271, 276, 289, 290, 291, 292], "beginn": [90, 271, 290, 291], "behav": [32, 77, 123, 168, 213, 258, 276, 289], "behavior": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 274, 276, 285, 286, 287, 288, 292], "behind": 292, "being": [1, 24, 46, 69, 92, 115, 137, 160, 182, 205, 227, 250, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "believ": 271, "bell": [273, 286], "belong": [272, 276, 285, 287, 288, 291, 292], "below": [20, 32, 38, 42, 65, 77, 83, 87, 111, 123, 129, 133, 156, 168, 174, 178, 201, 213, 219, 223, 246, 258, 264, 268, 271, 274, 281, 287, 289], "bench": [273, 286], "benchmark": [32, 77, 123, 168, 213, 258], "beneath": 289, "benefici": [291, 292], "benefit": [271, 274, 276, 287, 289], "benjaminrk": [36, 81, 127, 172, 217, 262], "bennour": [36, 81, 127, 172, 217, 262], "berkelei": [36, 81, 127, 172, 217, 262], "berri": 291, "bert": 293, "best": [271, 272, 285, 287, 292], "beta": [274, 287], "better": [271, 272, 273, 274, 283, 285, 286, 287, 288, 289, 290, 291, 292], "between": [271, 273, 274, 286, 287, 288, 289, 290, 291, 292], "beyond": [273, 282, 286, 290, 292], "bf5400": [7, 52, 98, 143, 188, 233], "bfloat16": 276, "bia": [272, 285, 293], "bias": [289, 290], "bias_1": 276, "bias_grad": 276, "bib": [24, 69, 115, 160, 205, 250], "bibliographi": [24, 69, 115, 160, 205, 250], "bibtex": [24, 43, 69, 88, 115, 134, 160, 179, 205, 224, 250, 269], "bicycl": [289, 290, 291], "big": [273, 274, 276, 286, 287, 288, 289, 290, 292], "bigger": [274, 276, 287, 288, 289, 291, 292], "biggest": [272, 273, 274, 285, 286, 287, 288], "bike": [274, 287, 289], "bill": [274, 287], "billion": [276, 289], "bin": 287, "binari": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 289], "binary_fold": [1, 46, 92, 137, 182, 227], "bird": [274, 276, 287, 289, 291], "birdwatch": 289, "bit": [1, 46, 92, 137, 182, 227, 276, 289, 291], "bite": [290, 292], "black": [289, 291], "blame": [32, 77, 123, 168, 213, 258, 289], "blank": 291, "bleb2": [36, 81, 127, 172, 217, 262], "blend": [288, 289, 290], "blindfold": [276, 289], "blink": [273, 286], "block": [25, 29, 31, 41, 70, 74, 76, 86, 116, 120, 122, 132, 161, 165, 167, 177, 206, 210, 212, 222, 251, 255, 257, 267, 271, 272, 285, 288, 289, 290, 292], "blockquot": [31, 76, 122, 167, 212, 257], "blood": [273, 274, 286, 287], "bloomberg": [36, 81, 127, 172, 217, 262], "blue": [273, 286, 288, 291], "blueprint": [289, 290, 291], "blurri": [276, 289, 291], "bmi": 288, "board": [274, 287, 291], "bob": [273, 274, 286, 287, 288], "bodi": [1, 31, 46, 76, 92, 122, 137, 167, 182, 212, 227, 257, 289], "bold": 276, "bone": 289, "bonsai": [274, 287], "book": [24, 25, 26, 69, 70, 71, 115, 116, 117, 160, 161, 162, 205, 206, 207, 250, 251, 252, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "bookshelf": 288, "bool": [32, 77, 123, 168, 213, 258, 276], "boolean": [32, 77, 123, 168, 213, 258, 276], "boot": 288, "border": 291, "bore": 276, "bori": [36, 81, 127, 172, 217, 262], "both": [1, 24, 32, 46, 69, 77, 92, 115, 123, 137, 160, 168, 182, 205, 213, 227, 250, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "bottl": 290, "bottleneck": 290, "bottom": [274, 276, 287, 289], "bought": [273, 286, 288], "boulder": [274, 287], "bounc": 276, "bouncer": [274, 276, 287], "bound": 276, "boundari": [276, 291], "boutiqu": 289, "bower": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256], "bowl": [274, 276, 287, 288, 289], "box": [24, 69, 115, 160, 205, 250, 276, 288, 290], "bracket": [31, 76, 122, 167, 212, 257, 276], "brain": [272, 276, 285, 289, 290, 291, 292], "branch": [32, 77, 123, 168, 213, 258, 274, 287, 290, 292], "brand": [273, 286, 288, 290], "brandon": [36, 81, 127, 172, 217, 262], "brandyn": [36, 81, 127, 172, 217, 262], "bread": [274, 287, 288, 289, 290, 292], "break": [1, 46, 92, 137, 182, 227, 273, 276, 286, 288, 289, 291, 292], "breakdown": [274, 287], "breakfast": [288, 292], "breed": [274, 287, 289, 291], "brian": [36, 81, 127, 172, 217, 262], "brief": [42, 87, 133, 178, 223, 268], "bright": [274, 276, 287, 289, 290, 291], "brighten": 289, "brighter": 276, "brilliant": [274, 287], "bring": [274, 287, 289], "broad": [288, 289, 292], "broader": [288, 291, 292], "broadli": 276, "broken": [271, 273, 286, 290], "bronder": [36, 81, 127, 172, 217, 262], "brown": 289, "brows": [274, 287, 290], "browser": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256], "brush": [291, 292], "bsd": [21, 38, 66, 83, 112, 129, 157, 174, 202, 219, 247, 264], "bu": [36, 81, 127, 172, 217, 262], "bubblenet": [36, 81, 127, 172, 217, 262], "bucebuc": [36, 81, 127, 172, 217, 262], "buchholz": [36, 81, 127, 172, 217, 262], "budg": 289, "budget": [274, 287, 288], "buff": 288, "bug": [31, 76, 122, 167, 212, 257], "bugfix": [27, 72, 118, 163, 208, 253], "bui": [272, 273, 274, 285, 286, 287, 288, 290], "build": [24, 42, 69, 87, 115, 133, 160, 178, 205, 223, 250, 268, 272, 273, 274, 282, 285, 286, 287, 288, 289, 291, 292], "built": [25, 70, 116, 161, 206, 251, 276, 291], "bulb": [276, 289, 290, 291], "bulk": 288, "bullsey": [274, 287], "bump": [276, 289], "bumpi": 289, "bumpiest": 289, "bun": 288, "bunch": [42, 87, 133, 178, 223, 268], "bundl": [23, 42, 68, 87, 114, 133, 159, 178, 204, 223, 249, 268], "burger": 288, "burn": [274, 276, 287, 289], "busi": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 272, 285, 287, 288, 289], "butter": [273, 286, 288, 289, 290, 291], "butterfli": 288, "bwhite": [36, 81, 127, 172, 217, 262], "byte": [1, 46, 92, 137, 182, 227], "c": [18, 21, 28, 33, 35, 37, 38, 43, 63, 66, 73, 78, 80, 82, 83, 88, 109, 112, 119, 124, 126, 128, 129, 134, 154, 157, 164, 169, 171, 173, 174, 179, 199, 202, 209, 214, 216, 218, 219, 224, 244, 247, 254, 259, 261, 263, 264, 269, 273, 286, 288], "c4a2f5": [17, 62, 108, 153, 198, 243], "c5e478": [16, 61, 107, 152, 197, 242], "c9d1d9": [8, 9, 10, 53, 54, 55, 99, 100, 101, 144, 145, 146, 189, 190, 191, 234, 235, 236], "ca": [36, 81, 127, 172, 217, 262], "caab6d": [14, 59, 105, 150, 195, 240], "cafeteria": 288, "cake": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 292], "cal": 288, "calcul": [273, 274, 286, 287, 291], "calculate_capac": 276, "call": [24, 44, 69, 89, 115, 135, 160, 180, 205, 225, 250, 270, 276, 289, 290, 291, 292], "calm": 289, "camera": [273, 286, 291, 292], "can": [1, 20, 24, 25, 26, 29, 32, 46, 65, 69, 70, 71, 74, 77, 92, 111, 115, 116, 117, 120, 123, 137, 156, 160, 161, 162, 165, 168, 182, 201, 205, 206, 207, 210, 213, 227, 246, 250, 251, 252, 255, 258, 271, 272, 273, 274, 276, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294], "candi": [273, 286, 288, 291, 292], "cannot": [31, 76, 122, 167, 212, 257, 291], "canva": 291, "cap": [274, 287], "capabl": [276, 290, 292], "cape": 276, "captain": 288, "caption": [292, 293], "captur": [276, 288, 289, 291, 292], "car": [273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "card": [274, 276, 287, 288, 290], "care": [274, 276, 287, 288, 289, 292], "carefulli": [271, 274, 287, 289, 290, 292], "carlo": [36, 81, 127, 172, 217, 262], "caron": [36, 81, 127, 172, 217, 262], "carpent": 290, "carri": [1, 46, 92, 137, 182, 227, 273, 286, 289, 292], "carriag": [1, 46, 92, 137, 182, 227, 292], "cart": [274, 287, 288, 289], "carv": 290, "case": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 274, 276, 282, 285, 286, 287, 289, 290, 292], "cashier": [274, 287], "castl": 292, "casual": [288, 292], "cat": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "catch": [272, 285, 289], "categor": [272, 276, 285, 287, 291, 292], "categori": [272, 273, 276, 282, 285, 286, 288, 289, 290, 291, 292], "caught": [272, 285], "caus": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 288, 289], "caution": 288, "cautiou": 289, "cc": [36, 81, 127, 172, 217, 262], "cc398b": [7, 52, 98, 143, 188, 233], "ccbb44": [6, 51, 97, 142, 187, 232], "cdoubl": 276, "celebr": 288, "cell": [90, 288, 290, 292], "center": [276, 288, 289], "central": 290, "ceo": [274, 287], "certain": [272, 276, 285, 287, 289, 290, 291, 292], "certainli": [274, 287], "certainti": [274, 287], "certik": [36, 81, 127, 172, 217, 262], "cf": [32, 77, 123, 168, 213, 258], "cf222e": [11, 56, 102, 147, 192, 237], "cgohlk": [36, 81, 127, 172, 217, 262], "chair": [288, 289, 290], "chalkboard": 292, "challeng": [90, 276, 290], "chanc": [274, 276, 287, 288, 289], "chang": [42, 87, 133, 178, 223, 268, 273, 274, 276, 286, 287, 289, 290, 291, 292], "changelog": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256], "channel": 288, "chao": 288, "chapel": [36, 81, 127, 172, 217, 262], "chapter": [90, 271], "charact": [1, 29, 46, 74, 92, 120, 137, 165, 182, 210, 227, 255, 273, 286, 288, 292], "characterist": [276, 287, 288, 291, 292], "charg": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263, 290], "charger": 288, "charli": [273, 274, 286, 287], "charset": [1, 31, 46, 76, 92, 122, 137, 167, 182, 212, 227, 257], "chart": 292, "chat": [90, 271], "check": [23, 26, 32, 42, 68, 71, 77, 87, 114, 117, 123, 133, 159, 162, 168, 178, 204, 207, 213, 223, 249, 252, 258, 268, 271, 272, 274, 276, 285, 287, 288, 289, 290, 291], "cheerlead": 288, "chees": [273, 274, 286, 287, 288, 289], "chef": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290], "chemistri": [273, 286], "chernyshov": [36, 81, 127, 172, 217, 262], "chess": [276, 288], "chief": 276, "child": [272, 273, 274, 276, 285, 286, 287, 289, 291], "children": [273, 286], "chines": [274, 287], "chip": [272, 285, 288, 290, 292], "choc": [274, 287], "chocol": [272, 273, 276, 285, 286, 289, 290, 291, 292], "chocolatei": [276, 289], "choic": [31, 76, 122, 167, 212, 257, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "choos": [271, 274, 287, 289, 290, 291, 292], "chop": [272, 273, 285, 286, 290], "chosen": 276, "chri": [36, 81, 127, 172, 217, 262], "christian": [36, 81, 127, 172, 217, 262], "christoph": [36, 81, 127, 172, 217, 262], "chunk": [276, 290, 292], "circl": [276, 288], "citat": [43, 88, 134, 179, 224, 269], "cite": [24, 69, 115, 160, 205, 250], "citi": [273, 286, 288, 289, 292], "citru": 291, "claim": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "clarif": 90, "clarifi": 276, "clariti": [273, 286, 291], "class": [1, 20, 29, 32, 46, 65, 74, 77, 92, 111, 120, 123, 137, 156, 165, 168, 182, 201, 210, 213, 227, 246, 255, 258, 273, 282, 286, 289, 292], "classic": [32, 77, 123, 168, 213, 258, 276, 289], "classif": [271, 282, 289], "classifi": [274, 282, 287, 289, 290, 291, 292], "classroom": [273, 286], "claus": [21, 38, 66, 83, 112, 129, 157, 174, 202, 219, 247, 264], "clawsicu": [36, 81, 127, 172, 217, 262], "clean": [272, 274, 285, 287, 288, 289, 290, 291, 292], "clean_data": [273, 286], "clear": [90, 271, 273, 274, 276, 286, 287, 288, 289, 290, 291], "clearer": [90, 271, 289], "clearli": [273, 274, 286, 287, 288, 289, 291], "clerk": 288, "clever": 289, "click": [29, 42, 74, 87, 90, 120, 133, 165, 178, 210, 223, 255, 268, 271, 273, 281, 286], "climb": 289, "cline": [36, 81, 127, 172, 217, 262], "clip": 289, "clock": [273, 286], "clone": 281, "close": [29, 74, 120, 165, 210, 255, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "closer": [274, 276, 287, 289, 292], "closest": 288, "closet": [288, 290], "cloth": [274, 287, 288, 289, 290, 291], "cloud": [271, 281, 293], "cloudcontrol": [36, 81, 127, 172, 217, 262], "cloudi": [274, 287], "club": [274, 287, 288, 289, 290, 291], "clue": [274, 287, 288, 291, 292], "cluster": [271, 273, 286], "clutter": [273, 274, 276, 286, 287, 289, 292], "cm": [26, 71, 117, 162, 207, 252, 273, 286], "cmakelist": [44, 89, 135, 180, 225, 270], "cmap": [26, 71, 117, 162, 207, 252], "cnn": [271, 282], "co": [36, 81, 127, 172, 217, 262], "coach": [273, 286, 289, 290], "coat": 288, "cocoa": [276, 289], "code": [1, 8, 10, 18, 19, 20, 21, 25, 27, 28, 29, 33, 38, 42, 43, 46, 53, 55, 63, 64, 65, 66, 70, 72, 73, 74, 78, 83, 87, 88, 90, 92, 99, 101, 109, 110, 111, 112, 116, 118, 119, 120, 124, 129, 133, 134, 137, 144, 146, 154, 155, 156, 157, 161, 163, 164, 165, 169, 174, 178, 179, 182, 189, 191, 199, 200, 201, 202, 206, 208, 209, 210, 214, 219, 223, 224, 227, 234, 236, 244, 245, 246, 247, 251, 253, 254, 255, 259, 264, 268, 269, 271, 281, 290], "codec": [1, 27, 28, 46, 72, 73, 92, 118, 119, 137, 163, 164, 182, 208, 209, 227, 253, 254], "codecobbl": [36, 81, 127, 172, 217, 262], "coffe": [273, 286, 288], "coin": [274, 287], "coincid": 288, "colab": [90, 271, 281], "cold": [26, 71, 117, 162, 207, 252, 273, 274, 276, 286, 287, 289, 292], "colder": 276, "coldest": [274, 287], "colish": [36, 81, 127, 172, 217, 262], "collabor": 290, "colleagu": [274, 287], "collect": [42, 87, 133, 178, 223, 268, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "colomiet": [36, 81, 127, 172, 217, 262], "colon": [1, 46, 92, 137, 182, 227], "color": [26, 71, 117, 162, 207, 252, 273, 274, 276, 286, 287, 288, 289, 290], "colsample_bytre": [274, 287], "column": [273, 276, 286, 290, 292], "com": [27, 33, 34, 36, 37, 72, 78, 79, 81, 82, 90, 118, 124, 125, 127, 128, 163, 169, 170, 172, 173, 208, 214, 215, 217, 218, 253, 259, 260, 262, 263, 273, 274, 276, 281, 282, 286, 287], "combin": [32, 77, 123, 168, 213, 258, 272, 273, 274, 276, 282, 285, 286, 287, 288, 289, 291, 292], "combo": 288, "come": [32, 77, 90, 123, 168, 213, 258, 273, 274, 276, 286, 287, 288, 289, 290, 292], "comedi": [274, 287, 292], "comedian": [274, 287], "comfort": [31, 76, 122, 167, 212, 257, 274, 276, 287], "command": [25, 32, 70, 77, 116, 123, 161, 168, 206, 213, 251, 258, 272, 281, 285, 289, 290, 292], "comment": 276, "commerc": [272, 285], "committe": [274, 276, 287], "common": [1, 46, 92, 137, 182, 227, 272, 285, 288, 290, 291, 292], "commonli": [273, 276, 286], "commonmark": [24, 69, 115, 160, 205, 250], "commun": [288, 290, 292], "compact": 292, "compani": [274, 287, 292], "compar": [273, 274, 276, 282, 286, 287, 288, 289, 290, 291], "comparison": [32, 77, 123, 168, 213, 258, 274, 287], "compass": 289, "compat": [31, 32, 76, 77, 122, 123, 167, 168, 212, 213, 257, 258, 276], "compat32": [1, 46, 92, 137, 182, 227], "competit": [274, 287, 289], "complet": [273, 274, 276, 286, 287, 288, 289, 291, 292], "complex": [90, 271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "complex128": 276, "complex64": 276, "complianc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243], "compliant": [1, 46, 92, 137, 182, 227], "complic": [271, 274, 276, 287, 288, 289, 290], "compon": [1, 46, 92, 137, 182, 227, 271, 282, 284, 294], "compos": 290, "composit": [273, 286], "comprehens": [271, 289, 291, 292], "compress": [273, 286, 291], "compromis": 289, "comput": [32, 77, 123, 168, 213, 258, 271, 272, 273, 276, 285, 286, 292, 293], "computation": 276, "concept": [90, 271, 272, 282, 283, 285, 290], "conceptu": [1, 46, 92, 137, 182, 227], "concern": [271, 292, 293], "conclus": [276, 289, 291, 292], "conda": [271, 290], "condens": 276, "condit": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269, 274, 276, 287, 288, 289, 290, 291, 292], "condition": 289, "conduct": 276, "confid": [274, 276, 287], "configur": 290, "confirm": 276, "conflict": 271, "conform": [1, 46, 92, 137, 182, 227], "confus": [276, 282, 289], "connect": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263, 274, 276, 287, 288, 291, 292, 293], "connector": 288, "consciou": 288, "consequenti": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "conserv": [276, 288], "consid": [32, 77, 90, 123, 168, 213, 258, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "consist": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 276, 285, 286, 289, 290], "consol": [29, 74, 120, 165, 210, 255], "const": [31, 76, 122, 167, 212, 257], "constant": [32, 77, 123, 168, 213, 258, 273, 286], "constantli": [274, 276, 287, 289], "constraint": [274, 287], "construct": [276, 290, 291], "constructor": [31, 76, 122, 167, 212, 257], "consumpt": [1, 46, 92, 137, 182, 227], "contact": [273, 274, 286, 287], "contain": [1, 20, 27, 31, 42, 46, 65, 72, 76, 87, 92, 111, 118, 122, 133, 137, 156, 163, 167, 178, 182, 201, 208, 212, 223, 227, 246, 253, 257, 268, 273, 274, 276, 282, 286, 287, 290, 291], "content": [1, 23, 24, 25, 29, 42, 46, 68, 69, 70, 74, 87, 92, 114, 115, 116, 120, 133, 137, 159, 160, 161, 165, 178, 182, 204, 205, 206, 210, 223, 227, 249, 250, 251, 255, 268, 273, 274, 286, 287, 288, 289, 290, 291, 292], "context": [273, 276, 286, 290, 291, 292, 293], "contextu": [273, 286], "contigu": [32, 77, 123, 168, 213, 258], "continu": [36, 81, 127, 172, 217, 262, 272, 273, 285, 286, 289, 290, 292], "contour": 291, "contract": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "contribut": [36, 81, 127, 172, 217, 262, 274, 276, 287, 289, 290, 291, 292], "contributor": [18, 19, 21, 27, 33, 38, 43, 63, 64, 66, 72, 78, 83, 88, 109, 110, 112, 118, 124, 129, 134, 154, 155, 157, 163, 169, 174, 179, 199, 200, 202, 208, 214, 219, 224, 244, 245, 247, 253, 259, 264, 269], "control": [274, 276, 287, 288, 289, 290, 293], "convei": 292, "conveni": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258], "convent": 276, "convers": [273, 286, 290, 292], "convert": [1, 25, 42, 46, 70, 87, 92, 116, 133, 137, 161, 178, 182, 206, 223, 227, 251, 268, 272, 273, 276, 285, 286, 288, 292], "convex": 276, "convolut": [271, 276, 290], "cook": [273, 274, 276, 286, 287, 288, 289, 290], "cookbook": [274, 276, 287, 288, 290], "cooki": [272, 273, 274, 285, 286, 287, 288, 289, 290, 291, 292], "cool": [274, 287, 289], "coolwarm": [26, 71, 117, 162, 207, 252], "coordin": [272, 285, 288, 289, 291, 292], "copi": [22, 28, 32, 33, 35, 37, 67, 73, 77, 78, 80, 82, 113, 119, 123, 124, 126, 128, 158, 164, 168, 169, 171, 173, 203, 209, 213, 214, 216, 218, 248, 254, 258, 259, 261, 263, 273, 286, 290, 291], "copyright": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "core": [272, 273, 285, 286, 290, 292], "corlai": [36, 81, 127, 172, 217, 262], "corner": [90, 291], "correct": [273, 276, 286, 289, 290, 292], "correctli": [272, 274, 285, 287, 289, 290, 292], "correspond": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 290, 291, 292], "corridor": 288, "cosin": 288, "cost": [273, 276, 286, 288, 293], "costli": 276, "cough": [274, 287, 288], "could": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 276, 285, 289, 290, 291, 292], "counselor": 276, "count": [273, 274, 286, 287, 288, 292], "counter": 288, "countri": 288, "coupl": [32, 77, 123, 168, 213, 258], "coupon": 288, "cours": [1, 46, 92, 137, 182, 227, 274, 276, 287], "court": [288, 289], "cover": [276, 289, 291], "cox": [36, 81, 127, 172, 217, 262, 273, 286], "cozi": 288, "cpu": [274, 276, 287], "crack": 289, "craig": [36, 81, 127, 172, 217, 262], "cram": 291, "crash": [274, 276, 287, 289], "creager": [36, 81, 127, 172, 217, 262], "cream": [273, 274, 286, 287, 288], "creat": [1, 26, 29, 42, 46, 71, 74, 87, 90, 92, 117, 120, 133, 137, 162, 165, 178, 182, 207, 210, 223, 227, 252, 255, 268, 271, 272, 273, 282, 285, 286, 288, 289, 291, 292], "creation": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 276, 293], "creativ": [276, 289], "credit": [31, 76, 122, 167, 212, 257, 288], "crime": [274, 287], "criteria": [288, 290], "criterion": 276, "critic": [273, 274, 276, 286, 287, 289, 291], "crop": [290, 291], "cross": 290, "crossentropyloss": 276, "crotti": [36, 81, 127, 172, 217, 262], "crowd": [288, 291], "crucial": [273, 274, 276, 286, 287, 289, 290, 291, 292], "crust": 288, "cruz": [36, 81, 127, 172, 217, 262], "css": [31, 76, 122, 167, 212, 257], "csv": [273, 286], "cte_typ": [1, 46, 92, 137, 182, 227], "cube": [273, 286], "cuda": [276, 290], "cue": 276, "cuisin": [274, 287], "culprit": [32, 77, 123, 168, 213, 258, 292], "cumprod": [32, 77, 123, 168, 213, 258], "cumsum": [32, 77, 123, 168, 213, 258], "cup": [273, 274, 286, 287, 288, 289], "cupcak": [274, 287], "curios": 271, "current": [32, 77, 123, 168, 213, 258, 274, 276, 287, 289, 292], "curri": [272, 285], "curti": [36, 81, 127, 172, 217, 262], "curv": [273, 276, 282, 286, 288, 289], "custom": [29, 74, 120, 165, 210, 255, 272, 273, 276, 282, 284, 285, 286, 291, 292, 294], "custom_lin": [26, 71, 117, 162, 207, 252], "cut": [273, 274, 286, 287, 288, 290, 291, 292], "cutter": 291, "cycl": [272, 285, 289, 290], "cycler": [26, 71, 117, 162, 207, 252], "cyclic": 292, "cyril": [36, 81, 127, 172, 217, 262], "cz": [36, 81, 127, 172, 217, 262], "d": [25, 32, 42, 70, 77, 87, 116, 123, 133, 161, 168, 178, 206, 213, 223, 251, 258, 268, 272, 273, 276, 285, 286, 288, 290, 291, 292], "d1": [32, 77, 123, 168, 213, 258], "d166a3": [6, 51, 97, 142, 187, 232], "d2": [32, 77, 123, 168, 213, 258], "d2a8ff": [8, 9, 53, 54, 99, 100, 144, 145, 189, 190, 234, 235], "d4d0ab": [2, 47, 93, 138, 183, 228], "d71835": [5, 50, 96, 141, 186, 231], "d9dee3": [10, 55, 101, 146, 191, 236], "dad": [273, 286, 288], "dai": [90, 273, 274, 286, 287, 288, 289, 292], "daili": [273, 286, 288, 292], "dairi": 288, "damag": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269, 289], "dampen": 276, "dan": [36, 81, 127, 172, 217, 262], "danc": 288, "danger": [276, 288], "daniel": [36, 81, 127, 172, 217, 262], "danihelka": [36, 81, 127, 172, 217, 262], "dappervis": [36, 81, 127, 172, 217, 262], "dark": [274, 287, 291], "dart": [274, 287], "dashboard": [273, 284, 286, 294], "data": [18, 19, 21, 26, 32, 33, 38, 43, 63, 64, 66, 71, 77, 78, 83, 88, 109, 110, 112, 117, 123, 124, 129, 134, 154, 155, 157, 162, 168, 169, 174, 179, 199, 200, 202, 207, 213, 214, 219, 224, 244, 245, 247, 252, 258, 259, 264, 269, 271, 272, 274, 284, 285, 287, 291, 294], "databas": 291, "datacamp": 276, "datafram": 276, "dataset": [272, 276, 285, 289, 290, 291, 292], "date": [32, 77, 123, 168, 213, 258], "datetim": [273, 286], "daughter": [273, 286], "davi": [21, 66, 112, 157, 202, 247], "david": [27, 72, 118, 163, 208, 253, 273, 286], "dbb7ff": [10, 55, 101, 146, 191, 236], "dcc6e0": [2, 3, 47, 48, 93, 94, 138, 139, 183, 184, 228, 229], "dcolish": [36, 81, 127, 172, 217, 262], "de": [36, 81, 127, 172, 217, 262], "dead": [32, 77, 123, 168, 213, 258, 289], "deal": [1, 22, 28, 33, 35, 37, 46, 67, 73, 78, 80, 82, 92, 113, 119, 124, 126, 128, 137, 158, 164, 169, 171, 173, 182, 203, 209, 214, 216, 218, 227, 248, 254, 259, 261, 263, 276, 288, 289, 292], "dealership": 276, "debat": 289, "debian": [36, 81, 127, 172, 217, 262], "debri": 289, "debt": [274, 287], "debugg": [20, 65, 111, 156, 201, 246], "dec": [273, 286], "decid": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "decim": 276, "decis": [271, 272, 273, 282, 285, 286, 288, 289, 290, 291, 292], "declare_namespac": [20, 65, 111, 156, 201, 246], "decod": [1, 46, 92, 137, 182, 227, 293], "decor": 289, "decreas": 276, "deep": [90, 274, 282, 287, 291], "deepen": 90, "deeper": [276, 289, 291, 292], "deepfak": 289, "deepli": [1, 46, 92, 137, 182, 227], "def": 276, "default": [1, 8, 25, 31, 32, 46, 53, 70, 76, 77, 92, 99, 116, 122, 123, 137, 144, 161, 167, 168, 182, 189, 206, 212, 213, 227, 234, 251, 257, 258, 276], "defend": [273, 286], "defens": [273, 286], "defin": [20, 25, 29, 32, 42, 65, 70, 74, 77, 87, 111, 116, 120, 123, 133, 156, 161, 165, 168, 178, 201, 206, 210, 213, 223, 246, 251, 255, 258, 268, 272, 276, 285], "definit": [30, 75, 121, 166, 211, 256, 272, 274, 285, 287, 292], "degre": [274, 287, 292], "delabi": [36, 81, 127, 172, 217, 262], "delai": 290, "delici": [272, 274, 285, 287, 290], "delimit": [29, 31, 74, 76, 120, 122, 165, 167, 210, 212, 255, 257], "deliv": [272, 274, 285, 287, 291], "deliveri": 289, "demo": 282, "democraci": [274, 287], "democrat": [274, 287], "demonstr": [271, 276], "deni": [274, 287, 289], "dens": 288, "densiti": [273, 286], "depend": [24, 44, 69, 89, 115, 135, 160, 180, 205, 225, 250, 270, 271, 276, 281, 289, 290, 291, 292], "depict": 291, "deploi": [284, 290, 294], "deploy": [271, 272, 285], "depth": [23, 68, 114, 159, 204, 249], "der": [36, 38, 81, 83, 127, 129, 172, 174, 217, 219, 262, 264], "deriv": [18, 19, 21, 33, 38, 63, 64, 66, 78, 83, 109, 110, 112, 124, 129, 154, 155, 157, 169, 174, 199, 200, 202, 214, 219, 244, 245, 247, 259, 264], "descend": 289, "descent": 271, "describ": [1, 46, 92, 137, 182, 227, 276, 288], "descript": [288, 289, 292], "design": [27, 33, 72, 78, 118, 124, 163, 169, 208, 214, 253, 259, 276, 282, 288, 289, 290, 291, 292], "desk": [288, 292], "dessert": [274, 287, 288], "destin": [273, 274, 286, 287, 289, 290], "detail": [1, 25, 29, 42, 46, 70, 74, 87, 90, 92, 116, 120, 133, 137, 161, 165, 178, 182, 206, 210, 223, 227, 251, 255, 268, 273, 274, 276, 284, 286, 287, 288, 289, 290, 291, 292, 294], "detect": [272, 285, 289, 290, 292, 293], "determin": [1, 46, 92, 137, 182, 227, 276, 287, 289, 290, 291, 292], "detour": 276, "dev": [36, 81, 127, 172, 217, 262], "develop": [32, 33, 36, 77, 78, 81, 123, 124, 127, 168, 169, 172, 213, 214, 217, 258, 259, 262, 272, 274, 284, 285, 287, 289, 294], "deviat": [32, 77, 123, 168, 213, 258], "devic": [274, 287, 293], "di": [273, 286], "diagnos": [274, 276, 287], "diagnost": 291, "dial": [289, 290], "diana": [274, 287], "diaper": 288, "dict": [1, 46, 92, 137, 182, 227], "dictionari": [1, 46, 92, 137, 182, 227, 273, 276, 286, 292], "did": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 274, 285, 287, 289], "didn": [274, 276, 287], "die": [273, 276, 286], "diehl": [36, 81, 127, 172, 217, 262], "diet": 288, "dietari": [272, 285], "differ": [1, 24, 29, 30, 42, 46, 69, 74, 75, 87, 90, 92, 115, 120, 121, 133, 137, 160, 165, 166, 178, 182, 205, 210, 211, 223, 227, 250, 255, 256, 268, 272, 273, 282, 285, 286, 288, 289, 290, 291, 292], "differenti": 276, "difficulti": 289, "diffus": 293, "dig": [274, 287], "digest": 292, "digit": [273, 286, 290, 292], "digraph": 276, "dilat": 291, "dilig": 292, "dim": [276, 289], "dimens": [274, 276, 287, 288, 290, 291], "dimension": [271, 276, 290, 292], "diment": 276, "diminish": [274, 287], "dimmer": [276, 289, 290], "dine": 288, "dinner": [272, 285, 288, 289], "dip": 289, "direct": [18, 19, 21, 25, 33, 38, 43, 63, 64, 66, 70, 78, 83, 88, 109, 110, 112, 116, 124, 129, 134, 154, 155, 157, 161, 169, 174, 179, 199, 200, 202, 206, 214, 219, 224, 244, 245, 247, 251, 259, 264, 269, 274, 276, 287, 288, 289, 290, 292], "directli": [30, 75, 121, 166, 211, 256, 276, 289, 290, 291], "director1": [274, 287], "director2": [274, 287], "directori": [20, 32, 44, 65, 77, 89, 111, 123, 135, 156, 168, 180, 201, 213, 225, 246, 258, 270, 288], "dirti": [274, 287], "disappear": [32, 77, 123, 168, 213, 258], "disappoint": 292, "discard": [1, 46, 92, 137, 182, 227, 289, 292], "disclaim": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "discount": 288, "discourag": 289, "discov": [276, 288], "discret": [273, 286], "discuss": [1, 46, 92, 137, 182, 227, 272, 285, 292], "diseas": [274, 287, 288], "dish": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290], "displai": [25, 31, 70, 76, 116, 122, 161, 167, 206, 212, 251, 257, 276, 291], "distanc": [273, 274, 276, 286, 287, 289, 291, 292], "distinct": [274, 276, 287, 291], "distribut": [18, 19, 21, 22, 28, 33, 35, 37, 38, 42, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 87, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 133, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 178, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 223, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 268, 269, 276, 290], "div": [29, 31, 74, 76, 120, 122, 165, 167, 210, 212, 255, 257], "dive": 290, "divers": [274, 287], "divid": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 274, 287, 289, 290, 291, 292], "divis": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 274, 287, 288, 290], "dizzi": 288, "dl": [30, 75, 121, 166, 211, 256, 271, 272, 285], "dln": [36, 81, 127, 172, 217, 262], "dm": [32, 77, 123, 168, 213, 258], "do": [1, 22, 24, 26, 28, 33, 35, 37, 46, 67, 69, 71, 73, 78, 80, 82, 90, 92, 113, 115, 117, 119, 124, 126, 128, 137, 158, 160, 162, 164, 169, 171, 173, 182, 203, 205, 207, 209, 214, 216, 218, 227, 248, 250, 252, 254, 259, 261, 263, 273, 274, 281, 283, 286, 287, 288, 289, 290, 291, 292], "doc": [31, 76, 122, 167, 212, 257], "doctor": [274, 276, 287, 288], "document": [1, 18, 19, 21, 22, 23, 24, 25, 26, 28, 31, 32, 33, 35, 37, 38, 42, 43, 46, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 80, 82, 83, 87, 88, 90, 92, 109, 110, 112, 113, 114, 115, 116, 117, 119, 122, 123, 124, 126, 128, 129, 133, 134, 137, 154, 155, 157, 158, 159, 160, 161, 162, 164, 167, 168, 169, 171, 173, 174, 178, 179, 182, 199, 200, 202, 203, 204, 205, 206, 207, 209, 212, 213, 214, 216, 218, 219, 223, 224, 227, 244, 245, 247, 248, 249, 250, 251, 252, 254, 257, 258, 259, 261, 263, 264, 268, 269, 282, 293], "documentari": [274, 287], "docutil": [35, 80, 126, 171, 216, 261], "doe": [1, 23, 31, 32, 46, 68, 76, 77, 92, 114, 122, 123, 137, 159, 167, 168, 182, 204, 212, 213, 227, 249, 257, 258, 274, 284, 287, 289, 291, 292, 294], "doesn": [31, 76, 90, 122, 167, 212, 257, 271, 273, 274, 276, 286, 287, 289, 291, 292], "dog": [272, 274, 276, 285, 287, 288, 289, 290, 291, 292], "dollar": [26, 31, 71, 76, 117, 122, 162, 167, 207, 212, 252, 257, 273, 274, 286, 287], "domain": [32, 77, 123, 168, 213, 258, 291], "domcontentload": [31, 76, 122, 167, 212, 257], "domin": 289, "don": [1, 46, 92, 137, 182, 227, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "done": [1, 20, 31, 32, 46, 65, 76, 77, 92, 111, 122, 123, 137, 156, 167, 168, 182, 201, 212, 213, 227, 246, 257, 258, 276, 289, 290, 291], "door": [273, 276, 286, 289, 291], "doorman": 291, "dot": [36, 81, 127, 172, 217, 262, 274, 287], "doubl": [274, 276, 287, 289], "dough": [273, 286, 291], "dougla": [36, 81, 127, 172, 217, 262], "down": [32, 77, 123, 168, 213, 258, 271, 273, 274, 276, 286, 287, 289, 290, 291, 292], "downhil": [276, 289], "download": [42, 87, 133, 178, 223, 268, 290, 291], "downtown": 288, "dragon": [29, 74, 120, 165, 210, 255], "drama": [274, 287, 288, 292], "dramat": 276, "draw": [274, 276, 287, 289, 291], "draw_networkx_edge_label": 276, "drawer": 288, "dress": 288, "drink": [274, 287, 288], "drip": 276, "drive": [274, 287, 288, 289, 290, 291], "driven": 288, "drivewai": 292, "drop": [273, 286, 288], "dropout": [282, 292], "drummer": [274, 287], "dry": [276, 290], "dtype": [32, 77, 123, 168, 213, 258, 276], "dual": [33, 78, 124, 169, 214, 259], "duboi": [32, 77, 123, 168, 213, 258], "due": [273, 286, 292], "dug": [274, 287], "dugard": [32, 77, 123, 168, 213, 258], "dummi": 281, "duplic": [272, 285], "dure": [32, 77, 123, 168, 213, 258, 273, 276, 286, 288, 289, 290, 291, 292], "dy": [276, 289], "dynamor": [36, 81, 127, 172, 217, 262], "e": [31, 32, 36, 76, 77, 81, 122, 123, 127, 167, 168, 172, 212, 213, 217, 257, 258, 262, 272, 273, 276, 285, 286, 287, 288, 290, 291, 292], "e1e1e1": [15, 60, 106, 151, 196, 241], "each": [32, 42, 77, 87, 90, 123, 133, 168, 178, 213, 223, 258, 268, 271, 289, 290, 291, 292], "ear": 289, "earli": [274, 276, 282, 287, 291], "earlier": [32, 77, 123, 168, 213, 258, 272, 285, 289, 290, 291, 292], "eas": 290, "easi": [31, 32, 76, 77, 90, 122, 123, 167, 168, 212, 213, 257, 258, 273, 276, 286, 288, 289, 290, 292], "easier": [42, 87, 133, 178, 223, 268, 272, 274, 276, 285, 287, 288, 289, 290, 291, 292], "easili": [273, 276, 286, 289, 290], "eat": [274, 287, 288, 289, 292], "ec8e2c": [9, 54, 100, 145, 190, 235], "econom": [33, 78, 124, 169, 214, 259], "ecosystem": [24, 69, 115, 160, 205, 250, 290], "edg": [276, 288, 289, 290, 293], "edge_label": 276, "edit": [42, 87, 133, 178, 223, 268, 274, 287, 291], "editor": 291, "edu": [36, 81, 127, 172, 217, 262], "eduardo": [36, 81, 127, 172, 217, 262], "eduardooc": [36, 81, 127, 172, 217, 262], "educ": [273, 286], "ee6677": [6, 51, 97, 142, 187, 232], "effect": [27, 72, 118, 163, 208, 253, 273, 286, 288, 289, 290, 291, 292], "effici": [272, 273, 274, 276, 285, 286, 287, 288, 290, 291, 292], "efficientnet": 282, "effort": [274, 287, 289, 290, 291], "egg": [273, 274, 276, 286, 288, 289, 290], "eight": 276, "eintr": [36, 81, 127, 172, 217, 262], "either": [1, 20, 46, 65, 92, 111, 137, 156, 182, 201, 227, 246, 272, 274, 276, 285, 287, 291], "elabor": 292, "elderli": 288, "electr": 289, "electron": [274, 287], "element": [276, 290, 291, 292], "elif": 276, "elimin": [273, 286, 289], "ellisonbg": [36, 81, 127, 172, 217, 262], "els": [20, 29, 36, 65, 74, 81, 111, 120, 127, 156, 165, 172, 201, 210, 217, 246, 255, 262, 272, 276, 285, 289, 291], "em": [29, 74, 120, 165, 210, 255], "email": [90, 272, 273, 274, 276, 285, 286, 287, 288, 289, 292], "email5": [1, 46, 92, 137, 182, 227], "emb": [26, 71, 117, 162, 207, 252], "embed": [276, 292], "emelin": [36, 81, 127, 172, 217, 262], "empir": 276, "employ": [274, 287], "empti": [1, 46, 92, 137, 182, 227, 273, 274, 276, 286, 287, 288, 292], "enabl": [273, 276, 284, 286, 290, 291, 294], "encod": [1, 27, 46, 72, 92, 118, 137, 163, 182, 208, 227, 253, 292, 293], "encourag": 276, "end": [26, 32, 71, 77, 117, 123, 162, 168, 207, 213, 252, 258, 272, 274, 276, 285, 287, 289, 290, 291, 292], "endblock": [41, 86, 132, 177, 222, 267], "endfor": [41, 86, 132, 177, 222, 267], "endif": [41, 86, 132, 177, 222, 267], "endors": [18, 19, 21, 33, 63, 64, 66, 78, 109, 110, 112, 124, 154, 155, 157, 169, 199, 200, 202, 214, 244, 245, 247, 259], "endpoint": [274, 287], "endur": 290, "energi": [288, 289], "engag": [272, 285], "engin": [31, 76, 122, 167, 212, 257, 272, 274, 285, 287, 290, 291], "english": [42, 87, 133, 178, 223, 268, 273, 286, 288, 290], "enhanc": [290, 291, 292], "enough": [274, 276, 287, 288, 289, 290, 291, 292], "ensur": [20, 65, 111, 156, 201, 246, 272, 274, 276, 285, 287, 289, 290, 291, 292], "enter": [1, 46, 92, 137, 182, 227, 273, 274, 286, 287, 289], "entertain": [288, 292], "enthusiast": 290, "entir": [1, 46, 92, 137, 182, 227, 274, 276, 287, 289, 290, 291, 292], "entranc": [274, 287, 289], "entri": [32, 42, 77, 87, 123, 133, 168, 178, 213, 223, 258, 268, 271, 273, 274, 286, 287, 289], "enumer": 276, "env": 271, "envelop": [274, 287], "environ": [271, 281, 282, 289], "eppstein": [27, 72, 118, 163, 208, 253], "equal": [273, 274, 276, 286, 287, 288, 291], "equat": [31, 76, 90, 122, 167, 212, 257, 271], "equip": [276, 288, 290, 291], "equival": [32, 77, 123, 168, 213, 258, 276], "eras": [32, 77, 123, 168, 213, 258, 276, 291, 292], "eren": [36, 81, 127, 172, 217, 262], "erenguven0": [36, 81, 127, 172, 217, 262], "eric": [2, 3, 4, 5, 17, 32, 47, 48, 49, 50, 62, 77, 93, 94, 95, 96, 108, 123, 138, 139, 140, 141, 153, 168, 183, 184, 185, 186, 198, 213, 228, 229, 230, 231, 243, 258], "erick": [36, 81, 127, 172, 217, 262], "erik": [36, 81, 127, 172, 217, 262], "error": [1, 31, 46, 76, 90, 92, 122, 137, 167, 182, 212, 227, 257, 271, 272, 273, 285, 286, 293], "escal": 289, "escap": [26, 31, 39, 40, 41, 71, 76, 84, 85, 86, 117, 122, 130, 131, 132, 162, 167, 175, 176, 177, 207, 212, 220, 221, 222, 252, 257, 265, 266, 267, 276], "escapehtml": [29, 74, 120, 165, 210, 255], "especi": [272, 285, 290, 291, 292], "essai": 292, "essenc": [288, 289], "essenti": [90, 271, 274, 287, 289, 290, 291, 292], "estat": 287, "estim": [273, 274, 286, 287, 289], "etc": [26, 71, 117, 162, 207, 252, 272, 274, 276, 282, 285, 287, 288, 289], "eu": [36, 81, 127, 172, 217, 262], "euclidean": 288, "eugen": [36, 81, 127, 172, 217, 262], "euler": [31, 76, 122, 167, 212, 257], "eval": 276, "evalu": [271, 272, 273, 285, 286, 292], "even": [18, 19, 21, 32, 33, 38, 43, 63, 64, 66, 77, 78, 83, 88, 109, 110, 112, 123, 124, 129, 134, 154, 155, 157, 168, 169, 174, 179, 199, 200, 202, 213, 214, 219, 224, 244, 245, 247, 258, 259, 264, 269, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "evenli": [274, 287, 290], "event": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269, 284, 290, 292, 294], "eventu": [32, 77, 123, 168, 213, 258, 276, 289, 290], "ever": [271, 272, 285, 289], "everi": [271, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "everydai": [90, 271, 276, 291, 292], "everyon": [90, 271, 274, 287, 289, 290, 291, 292], "everyth": [32, 77, 123, 168, 213, 258, 271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "everywher": [32, 77, 123, 168, 213, 258, 289], "evid": [274, 287, 291], "exact": [273, 274, 276, 286, 287, 288, 289, 290, 291], "exactli": [1, 46, 92, 137, 182, 227, 272, 274, 276, 285, 287, 289, 291, 292], "exagger": [273, 286], "exam": [272, 273, 274, 276, 285, 286, 287, 289, 291], "examin": [1, 46, 92, 137, 182, 227, 291], "exampl": [1, 24, 26, 32, 46, 69, 71, 77, 90, 92, 115, 117, 123, 137, 160, 162, 168, 182, 205, 207, 213, 227, 250, 252, 258, 271, 282, 289, 290, 291, 292, 293], "excel": [273, 276, 286, 292], "except": [1, 20, 32, 46, 65, 77, 92, 111, 123, 137, 156, 168, 182, 201, 213, 227, 246, 258, 276, 289], "exclud": 291, "exclus": [276, 291], "execut": [25, 42, 70, 87, 116, 133, 161, 178, 206, 223, 251, 268], "exemplari": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "exercis": [90, 271, 288], "exert": [1, 46, 92, 137, 182, 227], "exhaust": [32, 77, 123, 168, 213, 258], "exist": [1, 46, 92, 137, 182, 227, 273, 274, 276, 286, 287, 290, 291, 292], "exit": [1, 46, 92, 137, 182, 227], "expand": 292, "expect": [32, 77, 123, 168, 213, 258, 273, 274, 276, 286, 287, 288, 290, 292], "expens": [273, 274, 276, 286, 287], "experi": [90, 271, 272, 273, 274, 282, 285, 286, 287, 288, 289, 291, 292], "experienc": [273, 274, 276, 286, 287, 288, 289], "experiment": [32, 77, 123, 168, 213, 258, 271, 276, 290], "expert": [273, 274, 286, 287, 289, 290, 291], "expertis": [274, 287], "explain": [90, 271, 272, 274, 276, 282, 285, 287], "explan": [42, 87, 90, 133, 178, 223, 268, 271, 273, 274, 286, 287, 289, 291], "explicit": [20, 65, 111, 156, 201, 246], "explod": [276, 289], "explor": [90, 272, 273, 285, 286, 289, 290, 291, 292], "exploratori": 271, "exponenti": 276, "exposur": [273, 286], "express": [18, 19, 21, 22, 28, 31, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 76, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 122, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 167, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 212, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 257, 259, 261, 263, 264, 269, 288, 292], "extend": [20, 31, 32, 65, 76, 77, 111, 122, 123, 156, 167, 168, 201, 212, 213, 246, 257, 258, 288, 290, 291], "extend_path": [20, 65, 111, 156, 201, 246], "extens": [20, 24, 31, 43, 65, 69, 76, 88, 111, 115, 122, 134, 156, 160, 167, 179, 201, 205, 212, 224, 246, 250, 257, 269, 276, 291], "extern": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258], "extra": [272, 273, 274, 285, 286, 287, 288, 289, 291, 292], "extract": [276, 291, 292], "extrem": [273, 276, 286, 289], "ey": [272, 274, 285, 287, 288, 289, 291], "ezeep": [36, 81, 127, 172, 217, 262], "f": [32, 77, 123, 168, 213, 258, 271, 273, 274, 276, 286, 287, 288, 289], "f1": [290, 292], "f26196": [17, 62, 108, 153, 198, 243], "f2f2f2": [5, 50, 96, 141, 186, 231], "f5a394": [17, 62, 108, 153, 198, 243], "f5ab35": [2, 47, 93, 138, 183, 228], "f5f5f5": [14, 15, 59, 60, 105, 106, 150, 151, 195, 196, 240, 241], "f78c6c": [16, 61, 107, 152, 197, 242], "f8f8f2": [2, 3, 47, 48, 93, 94, 138, 139, 183, 184, 228, 229], "face": [272, 285, 288, 289, 290], "facebook": 290, "facemask": 276, "facial": [276, 289, 291], "fact": [274, 287, 291], "factor": [274, 276, 287, 288, 289], "factori": [274, 276, 287, 289, 290], "fad000": [17, 62, 108, 153, 198, 243], "fae4c2": [4, 49, 95, 140, 185, 230], "fail": [273, 274, 276, 286, 287, 288, 289], "failur": [276, 282], "fair": [273, 274, 276, 286, 287, 293], "fairest": [274, 287], "fairli": 274, "fake": 289, "fall": [273, 286, 289, 292], "fals": [32, 77, 123, 168, 213, 258, 273, 274, 276, 286, 287], "famili": [273, 274, 276, 286, 287, 288, 291], "familiar": [32, 77, 90, 123, 168, 213, 258, 271, 272, 276, 281, 285, 290], "famou": 276, "fanci": [276, 289], "fantast": 292, "fantix": [36, 81, 127, 172, 217, 262], "far": [274, 276, 287, 288, 289, 290, 291, 292], "farther": 292, "fashion": [1, 46, 92, 137, 182, 227], "fast": [31, 76, 122, 167, 212, 257, 274, 276, 287, 288, 289, 290], "faster": [32, 77, 123, 168, 213, 258, 271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "fastest": 289, "fatal": [31, 76, 122, 167, 212, 257], "fatigu": [274, 287, 288], "faucet": [276, 289], "favorit": [273, 286, 288, 290, 291, 292], "fcfcfc": [7, 52, 98, 143, 188, 233], "fdac54": [9, 54, 100, 145, 190, 235], "fdf2e2": [5, 50, 96, 141, 186, 231], "feast": [288, 290], "feather": [276, 289], "featur": [271, 272, 276, 282, 285, 289, 292], "fedoraproject": [36, 81, 127, 172, 217, 262], "feed": [290, 293], "feedback": [272, 274, 276, 285, 287, 288, 289, 290], "feel": [23, 68, 114, 159, 204, 249, 271, 274, 289, 290, 292], "feet": [273, 274, 276, 286, 287, 289], "fefef": [4, 49, 95, 140, 185, 230], "fefeff": [17, 62, 108, 153, 198, 243], "feld": [36, 81, 127, 172, 217, 262], "felip": [36, 81, 127, 172, 217, 262], "felipecruz": [36, 81, 127, 172, 217, 262], "felix": [36, 81, 127, 172, 217, 262], "felt": [271, 292], "femal": [273, 286], "fenc": [29, 74, 120, 165, 210, 255, 274, 287], "fernando": [36, 81, 127, 172, 217, 262], "fever": [274, 287, 288], "few": [23, 32, 68, 77, 114, 123, 159, 168, 204, 213, 249, 258, 273, 274, 276, 286, 287, 288, 289, 291, 292], "fewer": [273, 286, 288, 289, 291, 292], "ff7b72": [8, 53, 99, 144, 189, 234], "ff9492": [10, 55, 101, 146, 191, 236], "ffa07a": [2, 3, 47, 48, 93, 94, 138, 139, 183, 184, 228, 229], "ffa657": [8, 53, 99, 144, 189, 234], "ffb757": [10, 55, 101, 146, 191, 236], "ffd700": [2, 47, 93, 138, 183, 228], "ffd900": [3, 48, 94, 139, 184, 229], "ffd9002e": [2, 3, 47, 48, 93, 94, 138, 139, 183, 184, 228, 229], "ffffff": [11, 12, 13, 56, 57, 58, 102, 103, 104, 147, 148, 149, 192, 193, 194, 237, 238, 239], "fi": [38, 83, 129, 174, 219, 264], "fiction": [274, 287, 288, 292], "field": [32, 77, 123, 168, 213, 258, 273, 274, 286, 287, 288, 291], "fieldmask": [32, 77, 123, 168, 213, 258], "fifth": [274, 287], "fig": [26, 71, 117, 162, 207, 252, 276], "figsiz": [26, 71, 117, 162, 207, 252, 276], "figur": [272, 273, 276, 285, 286, 289, 291, 292], "file": [20, 22, 23, 25, 28, 32, 33, 35, 37, 38, 44, 65, 67, 68, 70, 73, 77, 78, 80, 82, 83, 89, 111, 113, 114, 116, 119, 123, 124, 126, 128, 129, 135, 156, 158, 159, 161, 164, 168, 169, 171, 173, 174, 180, 201, 203, 204, 206, 209, 213, 214, 216, 218, 219, 225, 246, 248, 249, 251, 254, 258, 259, 261, 263, 264, 270, 273, 282, 286, 292], "filenam": [1, 46, 92, 137, 182, 227], "fill": [273, 276, 286, 290, 291], "fill_valu": [32, 77, 123, 168, 213, 258], "filler": 292, "film": [291, 292], "filter": [272, 274, 285, 287, 289, 291, 292], "fin": 276, "final": [1, 31, 42, 46, 76, 87, 92, 122, 133, 137, 167, 178, 182, 212, 223, 227, 257, 268, 272, 273, 274, 285, 286, 287, 288, 289, 290, 291, 292], "financi": [274, 287], "find": [32, 42, 77, 87, 123, 133, 168, 178, 213, 223, 258, 268, 272, 274, 282, 284, 285, 287, 288, 289, 290, 292, 294], "fine": [32, 77, 123, 168, 213, 258, 272, 274, 285, 287, 288, 290, 291, 292], "finer": [289, 291], "finger": [289, 291], "finish": [272, 274, 285, 287, 289, 290], "fire": [32, 77, 123, 168, 213, 258], "first": [1, 31, 32, 46, 76, 77, 92, 122, 123, 137, 167, 168, 182, 212, 213, 227, 257, 258, 271, 273, 274, 286, 287, 288, 289, 290, 291, 292], "fit": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269, 276, 288, 289, 290, 291, 292], "fix": [26, 71, 90, 117, 162, 207, 252, 271, 274, 276, 287, 288, 289], "flag": [31, 32, 76, 77, 122, 123, 167, 168, 212, 213, 257, 258], "flashcard": [272, 285], "flashlight": 291, "flat": [276, 288, 289], "flatten": 276, "flavor": [24, 69, 115, 160, 205, 250, 273, 274, 286, 287, 288, 290, 292], "flexibl": [1, 46, 92, 137, 182, 227, 274, 276, 287, 288, 290, 292], "flip": [273, 276, 286, 289], "float": [32, 77, 123, 168, 213, 258, 276, 290], "float16": 276, "float32": 276, "float64": [32, 77, 123, 168, 213, 258, 276], "floor": [288, 289, 291], "floral": 291, "flour": [273, 274, 286, 287, 288, 289, 290], "flow": [274, 276, 284, 287, 290, 292, 294], "flowchart": [274, 287], "flower": 291, "flu": [274, 287, 288], "fluctuat": 276, "fluffi": 289, "fly": [276, 290, 292], "fn": [274, 287], "foam": 289, "focu": [274, 276, 287, 288, 289, 290, 291, 292], "focus": [274, 287, 289, 290, 291], "fold": [1, 46, 92, 137, 182, 227, 274, 287, 288], "folder": [20, 42, 65, 87, 111, 133, 156, 178, 201, 223, 246, 268, 271, 276], "follow": [1, 18, 19, 20, 21, 22, 24, 25, 28, 31, 32, 33, 35, 36, 37, 38, 43, 46, 63, 64, 65, 66, 67, 69, 70, 73, 76, 77, 78, 80, 81, 82, 83, 88, 92, 109, 110, 111, 112, 113, 115, 116, 119, 122, 123, 124, 126, 127, 128, 129, 134, 137, 154, 155, 156, 157, 158, 160, 161, 164, 167, 168, 169, 171, 172, 173, 174, 179, 182, 199, 200, 201, 202, 203, 205, 206, 209, 212, 213, 214, 216, 217, 218, 219, 224, 227, 244, 245, 246, 247, 248, 250, 251, 254, 257, 258, 259, 261, 262, 263, 264, 269, 272, 273, 274, 276, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294], "font": 288, "font_siz": 276, "font_weight": 276, "fontsiz": 276, "food": [272, 273, 274, 285, 286, 287, 288, 289], "fool": 289, "footag": [272, 273, 274, 285, 286, 287, 291], "forc": [32, 77, 123, 168, 213, 258, 274, 276, 287, 288], "forcier": [18, 63, 109, 154, 199, 244], "ford": [273, 286], "foreach": 276, "forecast": [274, 287, 288, 289, 292], "forest": [271, 282, 291], "forev": [276, 289, 290], "forget": [272, 274, 285, 287, 289, 291, 292], "forgotten": [289, 292], "form": [1, 18, 19, 21, 33, 38, 43, 46, 63, 64, 66, 78, 83, 88, 92, 109, 110, 112, 124, 129, 134, 137, 154, 155, 157, 169, 174, 179, 182, 199, 200, 202, 214, 219, 224, 227, 244, 245, 247, 259, 264, 269, 272, 273, 285, 286, 288, 289, 290, 291, 292], "formal": 288, "format": [1, 31, 36, 46, 76, 81, 92, 122, 127, 137, 167, 172, 182, 212, 217, 227, 257, 262, 272, 276, 285], "formatt": [42, 87, 133, 178, 223, 268], "formula": [31, 76, 122, 167, 212, 257, 274, 287], "forth": 290, "fortin": [36, 81, 127, 172, 217, 262], "forward": [271, 273, 286, 292, 293], "found": [271, 274, 276, 287, 292], "foundat": [90, 272, 285, 290, 291], "four": [1, 46, 92, 137, 182, 227, 274, 276, 287, 289], "fourth": 276, "fp": [274, 287], "fr": [36, 81, 127, 172, 217, 262], "fraction": 276, "frame": [273, 286, 288, 290, 291], "framework": [1, 46, 92, 137, 182, 227, 284, 288, 291, 294], "frank": [36, 81, 127, 172, 217, 262], "fraud": 288, "fraudul": [272, 274, 285, 287], "free": [22, 28, 33, 35, 36, 37, 67, 73, 78, 80, 81, 82, 113, 119, 124, 126, 127, 128, 158, 164, 169, 171, 172, 173, 203, 209, 214, 216, 217, 218, 248, 254, 259, 261, 262, 263, 271, 274, 276, 287, 290, 292], "freedom": 290, "freeli": [289, 290, 291], "freez": 291, "french": [272, 285], "frequenc": [273, 286, 288, 292], "frequent": [289, 290, 291], "fresh": [272, 274, 285, 287, 289], "fri": 288, "fridg": 289, "friend": [271, 273, 274, 276, 286, 287, 288, 289, 291, 292], "friendli": [90, 271, 273, 284, 286, 288, 290, 291, 294], "friendship": [273, 286, 288], "friesel": [36, 81, 127, 172, 217, 262], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26, 28, 32, 33, 35, 37, 38, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 73, 77, 78, 80, 82, 83, 87, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 119, 123, 124, 126, 128, 129, 133, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 162, 164, 168, 169, 171, 173, 174, 178, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 207, 209, 213, 214, 216, 218, 219, 223, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 254, 258, 259, 261, 263, 264, 268, 271, 272, 273, 274, 282, 285, 286, 287, 288, 289, 290, 291, 292], "front": 288, "fruit": [273, 274, 276, 286, 287, 288, 291, 292], "frustrat": [32, 77, 123, 168, 213, 258, 289], "frvzmb": [36, 81, 127, 172, 217, 262], "ft": [272, 274, 285, 287], "fuel": [274, 287, 290, 292], "fujitsu": [36, 81, 127, 172, 217, 262], "full": [273, 276, 286, 288, 289, 290, 291, 292], "fulli": [272, 276, 285, 289, 291], "fullnam": [39, 40, 41, 84, 85, 86, 130, 131, 132, 175, 176, 177, 220, 221, 222, 265, 266, 267], "fun": [273, 276, 286], "function": [1, 24, 29, 32, 46, 69, 74, 77, 92, 115, 120, 123, 137, 160, 165, 168, 182, 205, 210, 213, 227, 250, 255, 258, 271, 284, 291, 292, 294], "fundament": [1, 46, 92, 137, 182, 227, 291], "funnel": 276, "fur": 289, "furnish": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "furnitur": [290, 291], "further": [273, 286, 290, 291, 292], "furthest": 288, "fuse": 276, "futur": [273, 286, 287, 290, 292], "fuzzi": [1, 46, 92, 137, 182, 227], "f\u00e9lix": [36, 81, 127, 172, 217, 262], "g": [32, 36, 77, 81, 123, 127, 168, 172, 213, 217, 258, 262, 272, 273, 276, 285, 286, 287, 288, 290, 291, 292], "ga": [288, 289], "gallagh": [36, 81, 127, 172, 217, 262], "game": [272, 273, 274, 285, 286, 287, 288, 289, 290, 291], "gan": 293, "gap": [274, 287], "garden": [273, 274, 286, 287], "garlic": [274, 287], "garnish": [274, 287, 288], "garrison": [36, 81, 127, 172, 217, 262], "gate": [276, 292], "gather": [272, 274, 285, 287, 288, 289, 290, 291, 292], "gaug": 292, "gave": 276, "gavri": [36, 81, 127, 172, 217, 262], "gavriep": [36, 81, 127, 172, 217, 262], "gbank": [36, 81, 127, 172, 217, 262], "gear": 289, "gender": [273, 286], "gene": 288, "gener": [1, 42, 46, 87, 92, 133, 137, 178, 182, 223, 227, 268, 271, 273, 274, 282, 286, 287, 290, 291, 292], "genr": [272, 274, 285, 287, 288, 292], "gentl": [276, 289], "gentler": 276, "genuin": 276, "geograph": 292, "geometri": [273, 286], "gerard": [32, 77, 123, 168, 213, 258], "gerg": [36, 81, 127, 172, 217, 262], "gestur": [273, 286], "get": [1, 24, 25, 46, 69, 70, 92, 115, 116, 137, 160, 161, 182, 205, 206, 227, 250, 251, 272, 273, 274, 283, 285, 286, 287, 288, 289, 290, 291, 292], "get_edge_attribut": 276, "get_node_attribut": 276, "getmask": [32, 77, 123, 168, 213, 258], "giant": [274, 290, 292], "gift": [273, 286], "git": [42, 87, 133, 178, 223, 268, 281], "gitcdn": [31, 76, 122, 167, 212, 257], "github": [36, 81, 90, 127, 172, 217, 262, 281], "gitignor": 271, "gitlab": [31, 76, 122, 167, 212, 257], "give": [23, 32, 68, 77, 114, 123, 159, 168, 204, 213, 249, 258, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "given": [272, 276, 285, 287, 289, 292], "glacier": 282, "glass": [289, 291], "glide": 276, "global": [30, 75, 121, 166, 211, 256, 276, 289, 290, 291, 292], "globe": 288, "glove": 292, "glyph": [1, 46, 92, 137, 182, 227], "gmail": [27, 33, 34, 36, 37, 72, 78, 79, 81, 82, 118, 124, 125, 127, 128, 163, 169, 170, 172, 173, 208, 214, 215, 217, 218, 253, 259, 260, 262, 263], "go": [23, 31, 42, 68, 76, 87, 114, 122, 133, 159, 167, 178, 204, 212, 223, 249, 257, 268, 272, 274, 276, 285, 287, 288, 289, 290, 291, 292], "goal": [272, 273, 274, 285, 286, 287, 288, 289, 290, 291], "goalkeep": [273, 286], "godefroid": [36, 81, 127, 172, 217, 262], "goe": [274, 276, 287, 288, 289, 290], "goessner": [31, 76, 122, 167, 212, 257], "gogh": 291, "gohlk": [36, 81, 127, 172, 217, 262], "golden": [274, 287, 289], "goldstein": [36, 81, 127, 172, 217, 262], "golf": [274, 287], "gone": [31, 76, 122, 167, 212, 257, 276], "good": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "goodpoint": [36, 81, 127, 172, 217, 262], "googl": [90, 271, 281], "googlemail": [36, 81, 127, 172, 217, 262], "gossip": 289, "got": [32, 77, 123, 168, 213, 258, 276, 289, 290], "gotcha": [36, 81, 127, 172, 217, 262], "gourmet": [272, 285], "gp": [274, 276, 287], "gpa": 288, "gpt": 293, "gpu": [271, 274, 276, 287, 289], "grad": 276, "grad_fn": 276, "gradcam": 282, "grade": [273, 274, 276, 286, 287, 288, 289, 290, 292], "gradient": 271, "grads0": 276, "grads1": 276, "grads2": 276, "gradual": [274, 276, 287, 289, 290, 291], "graduat": 289, "grai": 276, "gram": 288, "grammar": 292, "grandma": [273, 286], "granger": [36, 81, 127, 172, 217, 262], "grant": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "graph": [273, 276, 286], "graphcor": 276, "graphic": [290, 291], "grasp": [272, 285, 292], "gravel": 289, "great": [271, 273, 274, 276, 286, 287, 289, 291, 292], "greater": 291, "green": [273, 286, 288, 291], "greg": [36, 81, 127, 172, 217, 262], "grid": [273, 286, 290, 291], "grind": [273, 286, 289], "groceri": [273, 274, 286, 287, 288], "ground": [274, 287, 289], "group": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 292], "grow": [273, 274, 286, 287, 290], "growth": [273, 286], "gru": [271, 276], "guacamol": 288, "guard": [274, 287, 289], "guess": [273, 274, 276, 286, 287, 291, 292], "guest": [272, 285, 291, 292], "guid": [26, 71, 90, 117, 162, 207, 252, 272, 276, 285, 288, 289, 290], "guidelin": [274, 287], "guido": [36, 81, 127, 172, 217, 262], "guilti": [274, 287], "guitar": 289, "guitarist": [274, 287], "gull": 276, "gummi": [291, 292], "gupta": 90, "gust": 289, "gwozdziewycz": [36, 81, 127, 172, 217, 262], "gym": [276, 288], "g\u00f6ssner": [31, 76, 122, 167, 212, 257], "g\u00fcven": [36, 81, 127, 172, 217, 262], "h": 288, "ha": [1, 31, 32, 46, 76, 77, 92, 122, 123, 137, 167, 168, 182, 212, 213, 227, 257, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "habit": [288, 292], "hair": [276, 288, 291], "hairstyl": 291, "half": 276, "halfwai": [273, 286], "hall": 289, "halloween": [273, 286], "halt": 289, "hammer": [273, 286, 288, 289, 290, 291], "hand": [42, 87, 90, 133, 178, 223, 268, 271, 276, 287, 289, 290, 292], "handl": [271, 272, 274, 276, 285, 287, 288, 289, 290, 291, 292, 293], "handler": [1, 46, 92, 137, 182, 227], "handwrit": 289, "handwritten": 290, "hang": [273, 286, 288, 291, 292], "hangout": 288, "happen": [276, 289, 290, 291, 292], "happi": [288, 292], "har": 290, "hard": [276, 288, 289, 291, 292], "hardcastl": [36, 81, 127, 172, 217, 262], "harder": [276, 288, 289], "hardwar": [276, 290, 291], "harmoni": [274, 287, 292], "hasn": [274, 276, 287, 289], "hassl": 290, "hat": 274, "have": [1, 25, 31, 32, 33, 36, 46, 70, 76, 77, 78, 81, 90, 92, 116, 122, 123, 124, 127, 137, 161, 167, 168, 169, 172, 182, 206, 212, 213, 214, 217, 227, 251, 257, 258, 259, 262, 272, 273, 274, 276, 281, 283, 285, 286, 287, 288, 289, 290, 291, 292], "haven": 276, "he": [276, 289], "head": [31, 76, 122, 167, 212, 257, 271, 274, 287, 289, 292, 293], "headach": 288, "header_fetch_pars": [1, 46, 92, 137, 182, 227], "header_source_pars": [1, 46, 92, 137, 182, 227], "header_store_pars": [1, 46, 92, 137, 182, 227], "headphon": 288, "health": [274, 276, 287, 288, 289], "healthi": [274, 287, 288], "hear": [289, 292], "heard": [289, 292], "heartbeat": 292, "heat": [272, 274, 276, 285, 287, 289], "heater": 289, "heatmap": 282, "heavi": [273, 274, 276, 286, 287, 289], "heavili": [276, 292], "hei": 289, "height": [273, 274, 276, 286, 287, 288, 289, 291, 292], "held": 289, "help": [24, 69, 90, 115, 160, 205, 250, 272, 273, 274, 276, 282, 285, 286, 287, 288, 289, 290, 291, 292], "helper": [42, 87, 133, 178, 223, 268], "her": 276, "herb": [272, 274, 285, 287, 288], "here": [24, 26, 29, 32, 42, 69, 71, 74, 77, 87, 115, 117, 120, 123, 133, 160, 162, 165, 168, 178, 205, 207, 210, 213, 223, 250, 252, 255, 258, 268, 274, 287, 289, 290, 291], "herebi": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "hero": 276, "hex": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243], "hi": [276, 291], "hidden": [288, 290, 291, 292], "hide": [276, 288], "hierarch": [291, 292], "hierarchi": [274, 287, 288], "high": [273, 274, 286, 287, 289, 290, 291, 292], "higher": [274, 276, 287, 288, 290, 291], "highest": 276, "highli": 291, "highlight": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 290, 291], "highwai": 289, "hike": 289, "hill": [274, 287, 289], "hilli": [276, 289], "him": 276, "hipmunk": [36, 81, 127, 172, 217, 262], "histor": [272, 285, 287, 288], "histori": [42, 87, 133, 178, 223, 268, 272, 274, 285, 287, 288, 292], "hit": [274, 287, 290], "hmm": 276, "hoffman": [36, 81, 127, 172, 217, 262], "hoffman_brian": [36, 81, 127, 172, 217, 262], "hogwart": 274, "hold": [1, 36, 46, 81, 92, 127, 137, 172, 182, 217, 227, 262, 273, 286, 289, 290], "holder": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "holdgraf_evidence_2014": [24, 69, 115, 160, 205, 250], "holdout": [272, 285], "hole": [274, 276, 287], "holidai": [273, 286], "holweck": [36, 81, 127, 172, 217, 262], "home": [272, 273, 285, 286, 288], "homework": [273, 286, 292], "honda": [273, 286], "honest": [273, 286], "hood": [276, 290], "hook": [1, 46, 92, 137, 182, 227], "hope": 276, "horror": [274, 287], "host": 288, "hot": [26, 71, 117, 162, 207, 252, 274, 287, 289, 292], "hotdog": 288, "hotmail": [36, 81, 127, 172, 217, 262], "hour": [273, 274, 286, 287, 288, 289], "hous": [272, 276, 285, 288, 289, 290, 291], "household": [273, 286], "hover": [273, 286], "how": [23, 25, 29, 32, 42, 68, 70, 74, 77, 87, 90, 114, 116, 120, 123, 133, 159, 161, 165, 168, 178, 204, 206, 210, 213, 223, 249, 251, 255, 258, 268, 273, 274, 286, 287, 289, 290, 291, 292], "howev": [1, 18, 19, 21, 33, 38, 43, 46, 63, 64, 66, 78, 83, 88, 92, 109, 110, 112, 124, 129, 134, 137, 154, 155, 157, 169, 174, 179, 182, 199, 200, 202, 214, 219, 224, 227, 244, 245, 247, 259, 264, 269, 276, 289, 290, 292], "href": [31, 76, 122, 167, 212, 257], "html": [26, 31, 71, 76, 117, 122, 162, 167, 207, 212, 252, 257], "http": [1, 27, 31, 32, 33, 46, 72, 76, 77, 78, 92, 118, 122, 123, 124, 137, 163, 167, 168, 169, 182, 208, 212, 213, 214, 227, 253, 257, 258, 259, 276, 281, 282], "huge": [272, 276, 285, 288, 289, 290], "hugo": [36, 81, 127, 172, 217, 262], "hugoshi": [36, 81, 127, 172, 217, 262], "human": [1, 46, 92, 137, 182, 227, 272, 276, 285, 289, 291], "humid": [274, 287, 292], "hundr": 290, "hunger": 289, "hungri": [274, 287, 289], "hunter": 288, "hybrid": 293, "hyperparamet": [272, 285, 290, 291, 293], "i": [1, 2, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 42, 43, 46, 47, 63, 64, 65, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 87, 88, 90, 92, 93, 109, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 133, 134, 137, 138, 154, 155, 156, 157, 158, 159, 161, 162, 164, 165, 166, 167, 168, 169, 171, 172, 173, 174, 178, 179, 182, 183, 199, 200, 201, 202, 203, 204, 206, 207, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 223, 224, 227, 228, 244, 245, 246, 247, 248, 249, 251, 252, 254, 255, 256, 257, 258, 259, 261, 262, 263, 264, 268, 269, 273, 274, 281, 284, 286, 287, 288, 289, 291, 292, 294], "ian": [36, 81, 127, 172, 217, 262], "ianlee1521": [36, 81, 127, 172, 217, 262], "ibm": [36, 81, 127, 172, 217, 262], "ic": [273, 274, 286, 287, 288, 292], "icon": [90, 281], "id": [31, 36, 76, 81, 122, 127, 167, 172, 212, 217, 257, 262, 273, 286, 289, 290], "idea": [32, 77, 123, 168, 213, 258, 289, 290, 292], "ideal": [1, 46, 92, 137, 182, 227, 289], "ident": [31, 76, 122, 167, 212, 257, 273, 286, 290], "identifi": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 274, 285, 287, 288, 289, 290, 291, 292], "idl": 290, "idx": [29, 74, 120, 165, 210, 255, 276], "ignor": [288, 289, 291, 292], "ii": [26, 36, 71, 81, 117, 127, 162, 172, 207, 217, 252, 262], "iki": [38, 83, 129, 174, 219, 264], "il": [36, 81, 127, 172, 217, 262], "ill": 276, "illinoi": [33, 78, 124, 169, 214, 259], "illustr": 291, "iloc": 276, "imag": [26, 71, 117, 162, 207, 252, 271, 272, 273, 274, 276, 281, 282, 285, 286, 287, 289, 290, 292, 293], "image_tensor": [273, 286], "imagenet": 291, "imagin": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "imaginari": [276, 291], "imbalanc": [273, 274, 286, 287], "impact": 288, "implement": [1, 2, 20, 31, 32, 38, 46, 47, 65, 76, 77, 83, 90, 92, 93, 111, 122, 123, 129, 137, 138, 156, 167, 168, 174, 182, 183, 201, 212, 213, 219, 227, 228, 246, 257, 258, 264, 282], "impli": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "import": [20, 26, 32, 65, 71, 77, 111, 117, 123, 156, 162, 168, 201, 207, 213, 246, 252, 258, 271, 272, 281, 282, 285, 288, 289, 290, 291, 292, 293], "importerror": [20, 65, 111, 156, 201, 246], "imposs": [276, 288], "impress": 276, "improv": [32, 77, 90, 123, 168, 213, 258, 272, 273, 274, 282, 285, 286, 287, 288, 289, 290, 291, 292], "in_featur": 276, "inbox": [288, 292], "incept": 291, "inch": 276, "incid": [273, 286], "incident": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "includ": [0, 1, 18, 19, 21, 22, 25, 26, 28, 32, 33, 35, 37, 38, 43, 45, 46, 63, 64, 66, 67, 70, 71, 73, 77, 78, 80, 82, 83, 88, 90, 91, 92, 109, 110, 112, 113, 116, 117, 119, 123, 124, 126, 128, 129, 134, 136, 137, 154, 155, 157, 158, 161, 162, 164, 168, 169, 171, 173, 174, 179, 181, 182, 199, 200, 202, 203, 206, 207, 209, 213, 214, 216, 218, 219, 224, 226, 227, 244, 245, 247, 248, 251, 252, 254, 258, 259, 261, 263, 264, 269, 271, 272, 273, 276, 285, 286, 288, 289, 290, 291, 292], "incom": [273, 274, 286, 287], "incomplet": [276, 289], "inconveni": 276, "incorrect": 276, "incorrectli": 289, "increas": [273, 274, 276, 286, 287, 289], "increasingli": [32, 77, 123, 168, 213, 258, 276], "incred": 291, "increment": 276, "independ": [274, 276, 287, 288], "index": [273, 276, 286], "indic": [1, 32, 38, 46, 77, 83, 92, 123, 129, 137, 168, 174, 182, 213, 219, 227, 258, 264, 276, 290, 292], "indirect": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "individu": [1, 46, 92, 137, 182, 227, 273, 276, 286, 288, 290, 291, 292], "indoor": 282, "industri": [273, 286], "ined": [272, 285], "ineffici": [288, 290, 292], "inexperi": [32, 77, 123, 168, 213, 258], "inf": [32, 77, 123, 168, 213, 258], "infinit": 276, "inflex": 290, "influenc": [276, 288, 289, 290, 292], "info": [29, 74, 120, 165, 210, 255, 273, 276, 286], "inform": [1, 23, 25, 26, 32, 42, 46, 68, 70, 71, 77, 87, 92, 114, 116, 117, 123, 133, 137, 159, 161, 162, 168, 178, 182, 204, 206, 207, 213, 223, 227, 249, 251, 252, 258, 268, 272, 274, 276, 281, 285, 287, 290, 291, 292], "ingest": 276, "ingredi": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 292], "inherit": [20, 65, 111, 156, 201, 246], "init": [25, 70, 116, 161, 206, 251, 276], "initi": [32, 77, 123, 168, 213, 258, 273, 274, 286, 287, 288, 290], "inject": [284, 294], "inlin": [24, 31, 69, 76, 115, 122, 160, 167, 205, 212, 250, 257], "inner": 276, "innerhtml": [31, 76, 122, 167, 212, 257], "input": [1, 24, 32, 46, 69, 77, 92, 115, 123, 137, 160, 168, 182, 205, 213, 227, 250, 258, 273, 286, 290, 291, 292], "input_data": 276, "input_sampl": 276, "input_tensor": 276, "input_tensor_2": 276, "insert": [24, 69, 115, 160, 205, 250], "insid": [1, 20, 46, 65, 92, 111, 137, 156, 182, 201, 227, 246, 272, 285, 290], "insight": [284, 288, 290, 291, 294], "insignific": 289, "inspir": [5, 50, 96, 141, 186, 231, 276], "instabl": 276, "instagram": [273, 286], "instal": [31, 76, 122, 167, 212, 257, 276, 281], "instanc": [32, 77, 123, 168, 213, 258, 276, 287, 290, 291, 292], "instant": 291, "instanti": [1, 46, 92, 137, 182, 227, 276], "instantli": [291, 292], "instead": [32, 77, 123, 168, 213, 258, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "instruct": [25, 70, 116, 161, 206, 251, 282, 284, 290, 294], "instructor": [274, 287], "instrument": [274, 287], "int": 276, "int16": 276, "int32": 276, "int64": 276, "int8": 276, "intact": [291, 292], "integ": [276, 290], "integr": [27, 72, 118, 163, 208, 253, 293], "intel": [276, 282], "intellig": [276, 290], "intend": [1, 46, 92, 137, 182, 227, 292], "intens": [274, 287, 290, 291], "intention": [1, 46, 92, 137, 182, 227], "interact": [26, 71, 90, 117, 162, 207, 252, 272, 285, 290], "interchang": 276, "interest": [32, 77, 123, 168, 213, 258, 274, 276, 287, 291], "interfac": [1, 46, 92, 137, 182, 227, 282, 290], "intermedi": 276, "intern": [1, 46, 92, 137, 182, 227, 276, 290, 292], "internation": [42, 87, 133, 178, 223, 268], "internet": 290, "interpret": [276, 291], "interrupt": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 289], "intim": 288, "intoler": 289, "intric": [289, 290, 292], "introduc": [1, 46, 92, 137, 182, 227, 290, 291, 292], "introduct": 271, "intuit": [273, 274, 286, 287, 288, 290], "invalid": [31, 76, 122, 167, 212, 257], "invest": 292, "investig": [31, 76, 122, 167, 212, 257], "involv": [32, 77, 123, 168, 213, 258, 272, 285, 289, 290, 291, 292], "io": [42, 87, 133, 178, 223, 268], "ion": [26, 71, 117, 162, 207, 252], "ionut": [36, 81, 127, 172, 217, 262], "ionu\u021b": [36, 81, 127, 172, 217, 262], "ipu": 276, "ipykernel_1075": 276, "ipynb": [24, 69, 115, 160, 205, 250, 271], "irregular": 288, "irrelev": [273, 286, 289, 292], "is_appl": 276, "is_banana": 276, "is_orang": 276, "is_weekend": [273, 286], "isaac": [37, 82, 128, 173, 218, 263], "isaacmus": [37, 82, 128, 173, 218, 263], "isinst": 276, "isn": [273, 276, 286, 290, 291], "isol": 292, "issu": [32, 77, 90, 123, 168, 213, 258, 271, 273, 274, 286, 287, 288, 290], "italian": [274, 287], "item": [41, 86, 132, 177, 222, 267, 273, 274, 276, 286, 287, 289, 290, 291, 292], "iter": [272, 276, 285, 290], "its": [1, 19, 21, 32, 33, 42, 46, 64, 66, 77, 78, 87, 92, 110, 112, 123, 124, 133, 137, 155, 157, 168, 169, 178, 182, 200, 202, 213, 214, 223, 227, 245, 247, 258, 259, 268, 272, 273, 274, 276, 282, 285, 286, 287, 288, 289, 290, 291, 292], "itself": [30, 75, 121, 166, 211, 256, 273, 286, 289, 290, 292], "ivo": [36, 81, 127, 172, 217, 262], "j": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256, 276, 284, 294], "jam": 288, "jar": [276, 290, 292], "jargon": 271, "jasinski": [36, 81, 127, 172, 217, 262], "javascript": [31, 76, 122, 167, 212, 257], "jdgleeson": [36, 81, 127, 172, 217, 262], "jeff": [18, 63, 109, 154, 199, 244], "jigsaw": [289, 291], "jim": [36, 81, 127, 172, 217, 262], "job": [273, 274, 276, 286, 287, 288, 289, 290, 291], "john": [36, 81, 127, 172, 217, 262, 273, 286], "johnkgallagh": [36, 81, 127, 172, 217, 262], "join": [1, 46, 92, 137, 182, 227, 288], "joke": [274, 287], "jonathan": [34, 79, 125, 170, 215, 260], "jorden": [36, 81, 127, 172, 217, 262], "jot": 292, "journei": [273, 274, 276, 286, 287, 289], "jpcreativ": [36, 81, 127, 172, 217, 262], "jsbronder": [36, 81, 127, 172, 217, 262], "json": [42, 87, 133, 178, 223, 268, 273, 286], "jtaylor": [36, 81, 127, 172, 217, 262], "judg": [274, 276, 287, 289], "juggl": 289, "juic": 288, "julia": [31, 76, 122, 167, 212, 257], "julian": [36, 81, 127, 172, 217, 262], "jumbl": 292, "junk": 292, "jupternotebook": 281, "jupyt": [24, 25, 26, 69, 70, 71, 115, 116, 117, 160, 161, 162, 205, 206, 207, 250, 251, 252, 271, 282, 290], "jupyterbook": [24, 69, 115, 160, 205, 250], "jupyternotebook": 281, "jupytext": [25, 70, 116, 161, 206, 251], "juri": [274, 287], "just": [1, 24, 32, 46, 69, 77, 90, 92, 115, 123, 137, 160, 168, 182, 205, 213, 227, 250, 258, 271, 272, 273, 274, 285, 286, 287, 288, 289, 290, 291, 292], "justin": [36, 81, 127, 172, 217, 262], "j\u0119drzejewski": [36, 81, 127, 172, 217, 262], "k": [33, 78, 124, 169, 214, 259, 273, 276, 286], "kaggl": 282, "kaim": 276, "katex": [31, 76, 122, 167, 212, 257], "keep": [26, 32, 71, 77, 117, 123, 162, 168, 207, 213, 252, 258, 271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "kei": [1, 46, 92, 137, 182, 227, 288, 291, 292], "kellei": [36, 81, 127, 172, 217, 262], "kelli": [36, 81, 127, 172, 217, 262], "kenneth": [18, 63, 109, 154, 199, 244], "kept": [1, 46, 92, 137, 182, 227], "kera": 290, "kernel": [25, 70, 116, 161, 206, 251, 273, 286, 291], "kevin": [33, 78, 124, 169, 214, 259], "kevinsheppard": [33, 78, 124, 169, 214, 259], "keyword": 292, "kg": [273, 286], "kid": [273, 274, 276, 286, 287, 288], "kill": 289, "kim": [21, 66, 112, 157, 202, 247], "kind": [22, 24, 28, 33, 35, 37, 67, 69, 73, 78, 80, 82, 113, 115, 119, 124, 126, 128, 158, 160, 164, 169, 171, 173, 203, 205, 209, 214, 216, 218, 248, 250, 254, 259, 261, 263, 276, 289, 290, 291, 292], "kindergarten": [273, 286], "king": [36, 81, 127, 172, 217, 262, 292], "kitchen": [273, 274, 286, 287, 289, 290], "kluyver": [36, 81, 127, 172, 217, 262], "knife": [273, 286, 290, 291], "knight": [36, 81, 127, 172, 217, 262], "knive": [274, 287], "knn": [273, 286], "knob": [274, 276, 287, 289], "know": [42, 87, 133, 178, 223, 268, 272, 273, 274, 285, 286, 287, 288, 289, 290, 291, 292], "knowledg": [90, 271, 272, 274, 276, 285, 287, 288, 289, 290, 291, 292], "known": [274, 276, 287, 289, 290, 291, 292], "kramdown": [31, 76, 122, 167, 212, 257], "kt": [31, 76, 122, 167, 212, 257], "kyle": [36, 81, 127, 172, 217, 262], "kyledj": [36, 81, 127, 172, 217, 262], "l": [36, 81, 127, 172, 217, 262, 273, 286], "l64": [36, 81, 127, 172, 217, 262], "la_": [26, 71, 117, 162, 207, 252], "lab": 290, "label": [272, 285, 290, 291, 292], "label_po": 276, "label_sampl": 276, "lactos": 289, "lai": 289, "land": 290, "landscap": [288, 289, 291], "landschoff": [36, 81, 127, 172, 217, 262], "languag": [24, 42, 69, 87, 115, 133, 160, 178, 205, 223, 250, 268, 271, 272, 274, 276, 285, 287, 289, 290], "larg": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "larger": [288, 289, 291], "largest": 291, "lasso": [273, 286], "last": [273, 274, 276, 286, 287, 289, 291, 292], "late": [274, 276, 287], "latent": 293, "later": [32, 77, 123, 168, 213, 258, 274, 287, 289, 290, 291, 292], "latex": [27, 28, 72, 73, 118, 119, 163, 164, 208, 209, 253, 254], "latexcodec": [27, 28, 72, 73, 118, 119, 163, 164, 208, 209, 253, 254], "latter": [1, 46, 92, 137, 182, 227], "laundri": [274, 287, 289, 290], "law": [36, 81, 127, 172, 217, 262, 274, 287], "layer": [272, 285, 292, 293], "layer0": 276, "layer1": 276, "layer_s": 276, "layout": [273, 286, 288, 289, 290], "lb": [273, 286], "lc_messag": [42, 87, 133, 178, 223, 268], "lead": [274, 276, 287, 289, 291, 292], "leaf": 291, "leak": [276, 289], "leakag": [273, 286], "leaky_relu_pytorch": 276, "lean": [274, 287], "leap": 276, "learn": [32, 77, 123, 168, 213, 258, 273, 281, 286, 292], "learning_r": [274, 276, 287], "least": [32, 77, 123, 168, 213, 258, 273, 276, 286, 288], "leav": [1, 46, 92, 137, 182, 227, 273, 274, 286, 287, 288, 289, 292], "lectur": 292, "led": [36, 81, 127, 172, 217, 262], "ledgerx": [36, 81, 127, 172, 217, 262], "lee": [36, 81, 127, 172, 217, 262], "left": [273, 274, 276, 286, 287, 288, 289, 290, 291], "leg": [274, 276, 287, 289], "legaci": [1, 46, 92, 137, 182, 227], "legend": [26, 71, 117, 162, 207, 252], "lego": [288, 290, 292], "lemmat": 292, "len": [272, 273, 276, 285, 286], "lend": [274, 287], "length": [1, 46, 92, 137, 182, 227, 274, 287, 288, 292], "lenient": 276, "lens": 291, "lepilleur": [36, 81, 127, 172, 217, 262], "less": [272, 273, 274, 276, 285, 286, 287, 288, 289, 292], "lesson": 290, "let": [25, 31, 70, 76, 116, 122, 161, 167, 206, 212, 251, 257, 272, 273, 274, 285, 286, 287, 289, 290, 291, 292], "letter": [288, 289, 292], "level": [1, 29, 46, 74, 92, 120, 137, 165, 182, 210, 227, 255, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "leverag": [1, 46, 92, 137, 182, 227, 276, 290], "lexer": [27, 28, 72, 73, 118, 119, 163, 164, 208, 209, 253, 254], "liabil": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "liabl": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "librari": [1, 46, 92, 137, 182, 227, 271, 274, 287, 288, 290, 291, 292], "librarian": 292, "licenc": [38, 83, 129, 174, 219, 264], "licens": [21, 37, 66, 82, 112, 128, 157, 173, 202, 218, 247, 263], "life": [271, 273, 274, 276, 286, 287, 288, 290, 291], "lifecycl": 271, "lifestyl": 288, "light": [3, 17, 48, 62, 94, 108, 139, 153, 184, 198, 229, 243, 273, 274, 276, 286, 287, 289, 290, 291], "lightblu": 276, "lightweight": [289, 290], "like": [1, 24, 25, 29, 32, 42, 46, 69, 70, 74, 77, 87, 90, 92, 115, 116, 120, 123, 133, 137, 160, 161, 165, 168, 178, 182, 205, 206, 210, 213, 223, 227, 250, 251, 255, 258, 268, 271, 272, 273, 274, 276, 281, 285, 286, 287, 288, 289, 290, 291, 292], "liken": 292, "limit": [18, 19, 21, 22, 28, 32, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 77, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 123, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 168, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 213, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 258, 259, 261, 263, 264, 269, 289, 292], "line": [1, 24, 25, 26, 32, 42, 46, 69, 70, 71, 77, 87, 92, 115, 116, 117, 123, 133, 137, 160, 161, 162, 168, 178, 182, 205, 206, 207, 213, 223, 227, 250, 251, 252, 258, 268, 288, 289, 290, 291, 292], "line2d": [26, 71, 117, 162, 207, 252], "linear": [271, 290, 291, 292], "linefe": [1, 46, 92, 137, 182, 227], "linesep": [1, 46, 92, 137, 182, 227], "link": [31, 32, 76, 77, 122, 123, 167, 168, 212, 213, 257, 258, 274, 276, 287], "linspac": [26, 71, 117, 162, 207, 252], "linux": 290, "lion": 288, "lip": 291, "liquid": 290, "list": [1, 18, 19, 21, 30, 31, 32, 33, 38, 43, 46, 63, 64, 66, 75, 76, 77, 78, 83, 88, 92, 109, 110, 112, 121, 122, 123, 124, 129, 134, 137, 154, 155, 157, 166, 167, 168, 169, 174, 179, 182, 199, 200, 202, 211, 212, 213, 214, 219, 224, 227, 244, 245, 247, 256, 257, 258, 259, 264, 269, 272, 273, 274, 276, 285, 286, 287, 290, 291, 292], "listen": [276, 289, 292], "listwis": [273, 286], "lit": 289, "liter": 292, "littl": [274, 276, 287, 289, 292], "live": [272, 273, 274, 285, 286, 287, 289, 291], "ll": [24, 69, 115, 160, 205, 250, 271, 273, 274, 286, 287, 288, 289, 290, 291], "load": [30, 75, 121, 166, 211, 256], "loader": 282, "loaf": [290, 292], "loan": [274, 287], "lobster": 288, "local": [36, 42, 81, 87, 127, 133, 172, 178, 217, 223, 262, 268, 271, 281, 289, 292], "locat": [33, 78, 124, 169, 214, 259, 272, 273, 274, 276, 285, 286, 287, 288, 291], "lock": 291, "log": [29, 74, 120, 165, 210, 255], "logic": [274, 287, 288, 289], "logical_or": [32, 77, 123, 168, 213, 258], "logist": [271, 276], "logspac": [26, 71, 117, 162, 207, 252], "london": [273, 286], "lone": 288, "loner": 288, "long": [273, 274, 276, 286, 287, 288, 290, 292], "longer": [274, 276, 287, 289, 291, 292], "longest": [288, 292], "loogica": [36, 81, 127, 172, 217, 262], "look": [272, 273, 274, 276, 281, 285, 286, 287, 288, 289, 290, 291, 292], "loop": [32, 77, 123, 168, 213, 258, 282, 290], "loos": [288, 289], "lose": [1, 46, 92, 137, 182, 227, 274, 287, 288, 289, 291, 292], "loss": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 273, 286], "loss_funct": 276, "loss_valu": 276, "lost": [32, 77, 123, 168, 213, 258, 276, 289], "lot": [24, 26, 69, 71, 115, 117, 160, 162, 205, 207, 250, 252, 272, 273, 274, 276, 285, 286, 287, 289, 291, 292], "lothiraldan": [36, 81, 127, 172, 217, 262], "loud": [274, 287, 289], "loudspeak": 289, "love": [272, 285, 288, 291], "lover": 288, "low": [273, 274, 286, 287, 288, 289, 290, 291], "lower": [274, 287, 288], "lowest": [276, 288, 289], "lr": 276, "lr0": 276, "lst": 276, "lstm": [271, 276], "lu": [36, 81, 127, 172, 217, 262], "luggag": 289, "lunch": 288, "lundin": [36, 81, 127, 172, 217, 262], "luxuri": [273, 286, 287, 288, 292], "lw": [26, 71, 117, 162, 207, 252], "m": [28, 29, 32, 35, 36, 43, 73, 74, 77, 80, 81, 88, 119, 120, 123, 126, 127, 134, 164, 165, 168, 171, 172, 179, 209, 210, 213, 216, 217, 224, 254, 255, 258, 261, 262, 269, 273, 274, 286, 287, 288], "mac": [36, 81, 127, 172, 217, 262], "machin": [90, 273, 281, 286, 287, 288, 289, 290, 291, 292, 293], "machineri": [42, 87, 133, 178, 223, 268], "maco": [276, 290], "macro": [31, 76, 122, 167, 212, 257], "made": [32, 77, 123, 168, 213, 258, 276, 289, 290, 291], "mae": 276, "magic": [271, 274, 287, 291], "magnifi": 291, "magnitud": 276, "mai": [1, 18, 19, 21, 32, 33, 42, 46, 63, 64, 66, 77, 78, 87, 92, 109, 110, 112, 123, 124, 133, 137, 154, 155, 157, 168, 169, 178, 182, 199, 200, 202, 213, 214, 223, 227, 244, 245, 247, 258, 259, 268, 289, 290, 291], "mail": [274, 287, 289, 290, 292], "mailbox": 292, "main": [27, 72, 118, 163, 208, 253, 274, 276, 287, 288, 289, 290, 292], "maintain": [272, 273, 276, 285, 286, 288, 290, 292], "major": [1, 23, 32, 46, 68, 77, 92, 114, 123, 137, 159, 168, 182, 204, 213, 227, 249, 258, 273, 286, 288, 289], "make": [1, 26, 32, 42, 46, 71, 77, 87, 90, 92, 117, 123, 133, 137, 162, 168, 178, 182, 207, 213, 223, 227, 252, 258, 268, 272, 273, 276, 282, 285, 286, 288, 289, 290, 291, 292], "maker": [274, 287, 289, 291, 292], "male": [273, 286], "malfunct": [273, 286], "mall": [288, 289], "mammal": [273, 276, 286, 291, 292], "manag": [1, 46, 92, 137, 182, 227, 274, 276, 287, 288, 292, 293], "manager1": [274, 287], "manager2": [274, 287], "mandatori": [29, 74, 120, 165, 210, 255], "manhattan": 288, "mani": [24, 25, 32, 33, 42, 69, 70, 77, 78, 87, 115, 116, 123, 124, 133, 160, 161, 168, 169, 178, 205, 206, 213, 214, 223, 250, 251, 258, 259, 268, 271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "manipul": [1, 46, 92, 137, 182, 227, 291], "mansion": [273, 274, 286, 287], "manual": [272, 285], "map": [42, 87, 133, 178, 223, 268, 273, 274, 286, 287, 288, 289, 291, 292], "mar": [273, 286], "marbl": 276, "marc": [36, 81, 127, 172, 217, 262], "marchant": [32, 77, 123, 168, 213, 258], "margarin": [273, 286], "margin": [32, 77, 123, 168, 213, 258, 291], "mark": [272, 273, 285, 286, 287, 290, 291], "markdownfil": [25, 70, 116, 161, 206, 251], "markdownit": [31, 76, 122, 167, 212, 257], "markdownitdeflist": [30, 75, 121, 166, 211, 256], "markedli": [24, 69, 115, 160, 205, 250], "marker": [29, 74, 120, 165, 210, 255, 288], "markovtsev": [36, 81, 127, 172, 217, 262], "markup": [24, 29, 69, 74, 115, 120, 160, 165, 205, 210, 250, 255], "marvel": [274, 287], "mashi": [36, 81, 127, 172, 217, 262], "mask_or": [32, 77, 123, 168, 213, 258], "masked_arrai": [32, 77, 123, 168, 213, 258], "maskedrecord": [32, 77, 123, 168, 213, 258], "massiv": [272, 285, 289, 291], "master": [31, 76, 122, 167, 212, 257, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291], "mat": [291, 292], "match": [29, 74, 120, 165, 210, 255, 272, 276, 285, 289, 290, 291, 292], "materi": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 289, 290, 291, 292], "math": [26, 31, 71, 76, 117, 122, 162, 167, 207, 212, 252, 257, 271, 273, 274, 276, 286, 287, 288, 289, 292], "mathbb": [31, 76, 122, 167, 212, 257], "mathemat": [90, 271, 276, 291], "matmul": 276, "matplotlib": [26, 71, 117, 162, 207, 252, 276], "matplotlibrc": [32, 77, 123, 168, 213, 258], "matric": [276, 282, 290, 292], "matrix": [273, 276, 282, 286, 290], "matter": [273, 274, 286, 287, 288, 289, 290, 292], "matthew": [36, 81, 127, 172, 217, 262], "matthia": [27, 28, 35, 43, 72, 73, 80, 88, 118, 119, 126, 134, 163, 164, 171, 179, 208, 209, 216, 224, 253, 254, 261, 269], "mattja6": [36, 81, 127, 172, 217, 262], "max": [276, 291], "max_depth": [274, 287], "max_valu": [273, 286], "maxim": [276, 290], "maximum": [1, 46, 92, 137, 182, 227, 271, 273, 276, 286, 288, 289], "maxwel": [36, 81, 127, 172, 217, 262], "mayb": [272, 274, 276, 285, 287, 288, 289], "maze": [274, 287], "mbox": [26, 71, 117, 162, 207, 252], "mcar": [273, 286], "mcdonald": [274, 287], "md": [24, 25, 29, 30, 31, 69, 70, 74, 75, 76, 115, 116, 120, 121, 122, 160, 161, 165, 166, 167, 205, 206, 210, 211, 212, 250, 251, 255, 256, 257], "me": [29, 32, 74, 77, 90, 120, 123, 165, 168, 210, 213, 255, 258, 272, 276, 285, 291], "meal": [272, 273, 274, 285, 286, 287, 288, 289, 290], "mean": [1, 26, 31, 46, 71, 76, 92, 117, 122, 137, 162, 167, 182, 207, 212, 227, 252, 257, 289, 290, 291, 292], "mean_height": [273, 286], "meaning": [273, 276, 286, 288, 289, 290, 291, 292], "meaningfulli": 288, "meant": 290, "measur": [32, 77, 123, 168, 213, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 292], "meat": 288, "mechan": [271, 282, 292], "med": [273, 286], "media": [273, 286, 288, 292], "medic": [272, 285, 291], "medicin": [274, 287], "medium": [26, 71, 117, 162, 207, 252, 273, 274, 276, 286, 287, 288, 289], "meet": [1, 46, 92, 137, 182, 227, 274, 287, 288], "melodi": 292, "melon": [273, 286], "member": [273, 274, 286, 287, 288, 289, 290, 291], "membership": 288, "memor": [274, 287, 289, 290, 291, 292], "memori": [274, 276, 287, 288, 291], "mentat": [38, 83, 129, 174, 219, 264], "mention": 292, "menu": [272, 273, 274, 276, 285, 286, 287, 288, 289], "merchant": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "merg": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "mess": [272, 273, 285, 286], "messag": [42, 87, 133, 178, 223, 268, 276, 289, 292], "messi": [273, 274, 286, 287, 288], "met": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "meta": [31, 76, 122, 167, 212, 257, 276], "metal": 276, "meteorologi": 287, "method": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 274, 287, 289, 292, 293], "metric": [271, 272, 273, 276, 285, 286, 292, 293], "mexican": [274, 287, 288], "mgr1": [274, 287], "mgr2": [274, 287], "mgr3": [274, 287], "mgr4": [274, 287], "michael": [27, 72, 118, 163, 208, 253], "michel": [36, 81, 127, 172, 217, 262], "mid": 290, "middl": [273, 274, 286, 287, 288, 289], "might": [32, 77, 123, 168, 213, 258, 271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "migrain": 288, "mild": 289, "mile": [273, 274, 286, 287], "mileag": 276, "milk": [276, 288, 292], "million": [272, 273, 285, 286, 288, 290, 291], "millionair": [273, 286], "mime": [1, 46, 92, 137, 182, 227], "mimic": [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 32, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 77, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 123, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 168, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 213, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 258, 289, 291], "min": [31, 36, 76, 81, 122, 127, 167, 172, 212, 217, 257, 262, 274, 287], "min_child_weight": [274, 287], "min_max_scal": [273, 286], "min_valu": [273, 286], "mind": 289, "mini": [36, 81, 127, 172, 217, 262, 271], "minim": [288, 289, 290], "minima": 289, "minimum": [271, 273, 274, 276, 286, 287, 289], "minor": [273, 286, 288, 291], "minut": [276, 288, 289], "mirror": [276, 291], "mishear": 289, "mislead": [274, 287], "miss": [32, 77, 123, 168, 213, 258, 271, 272, 274, 276, 282, 285, 287, 289, 291, 292], "mistak": [272, 273, 274, 276, 285, 286, 287, 289, 290, 291], "mit": [29, 30, 31, 37, 74, 75, 76, 82, 120, 121, 122, 128, 165, 166, 167, 173, 210, 211, 212, 218, 255, 256, 257, 263], "mix": [272, 273, 276, 285, 286, 288, 289, 290, 291, 292], "mixer": [289, 290], "mixtur": 289, "ml": [271, 276, 288], "mlu": [90, 271], "mnar": [273, 286], "mo": [42, 87, 133, 178, 223, 268], "mobil": 293, "mode": [31, 76, 122, 167, 212, 257, 274, 276, 284, 287, 294], "model": [271, 273, 286, 292], "moder": [273, 274, 276, 286, 287, 288, 290], "modern": [271, 276], "modif": [18, 19, 21, 32, 33, 38, 43, 63, 64, 66, 77, 78, 83, 88, 109, 110, 112, 123, 124, 129, 134, 154, 155, 157, 168, 169, 174, 179, 199, 200, 202, 213, 214, 219, 224, 244, 245, 247, 258, 259, 264, 269, 273, 286], "modifi": [1, 20, 22, 28, 31, 33, 35, 37, 42, 46, 65, 67, 73, 76, 78, 80, 82, 87, 90, 92, 111, 113, 119, 122, 124, 126, 128, 133, 137, 156, 158, 164, 167, 169, 171, 173, 178, 182, 201, 203, 209, 212, 214, 216, 218, 223, 227, 246, 248, 254, 257, 259, 261, 263, 268, 273, 276, 286], "modul": [20, 30, 32, 33, 41, 65, 75, 77, 78, 86, 90, 111, 121, 123, 124, 132, 156, 166, 168, 169, 177, 201, 211, 213, 214, 222, 246, 256, 258, 259, 267, 276], "molass": 276, "mold": 289, "molehil": [273, 286], "mom": [273, 286, 288], "mom0": 276, "moment": [276, 289, 291, 292], "mondai": [273, 286], "monei": [274, 287], "monitor": [272, 274, 276, 285, 287, 288, 289], "month": [273, 274, 286, 287, 288], "monthli": [273, 274, 286, 287], "mood": 292, "more": [1, 4, 20, 23, 25, 26, 27, 32, 42, 46, 49, 65, 68, 70, 71, 72, 77, 87, 92, 95, 111, 114, 116, 117, 118, 123, 133, 137, 140, 156, 159, 161, 162, 163, 168, 178, 182, 185, 201, 204, 206, 207, 208, 213, 223, 227, 230, 246, 249, 251, 252, 253, 258, 268, 271, 272, 273, 274, 276, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294], "moreov": [24, 32, 69, 77, 115, 123, 160, 168, 205, 213, 250, 258], "morn": [273, 286, 288, 292], "mosaic": 291, "most": [1, 24, 32, 46, 69, 77, 92, 115, 123, 137, 160, 168, 182, 205, 213, 227, 250, 258, 273, 274, 286, 287, 288, 289, 290, 291, 292], "motion": [276, 290, 291], "motiv": 292, "motorcycl": 291, "mountain": [273, 276, 282, 286, 289], "mouth": 288, "move": [32, 77, 123, 168, 213, 258, 272, 273, 285, 286, 288, 289, 291], "movement": [276, 288, 289], "movi": [273, 274, 286, 287, 288, 291, 292], "mozilla": [36, 81, 127, 172, 217, 262], "mp": [36, 81, 127, 172, 217, 262, 276], "mpg": [273, 286], "mph": [273, 286, 289], "mr_": [32, 77, 123, 168, 213, 258], "mrecord": [32, 77, 123, 168, 213, 258], "mse_loss": 276, "mse_numpi": 276, "mse_pytorch": 276, "msg": [42, 87, 133, 178, 223, 268], "much": [273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "mud": 276, "multi": [291, 292, 293], "multiclass": 276, "multilingu": 292, "multipart": [1, 46, 92, 137, 182, 227], "multipl": [42, 87, 133, 178, 223, 268, 272, 273, 285, 286, 288, 289, 290, 292], "multipli": [276, 290], "multivari": [273, 286], "muscl": 276, "muse": [37, 82, 128, 173, 218, 263], "music": [274, 276, 287, 288, 289, 292], "musician": 292, "must": [1, 18, 19, 20, 21, 24, 33, 38, 43, 44, 46, 63, 64, 65, 66, 69, 78, 83, 88, 89, 92, 109, 110, 111, 112, 115, 124, 129, 134, 135, 137, 154, 155, 156, 157, 160, 169, 174, 179, 180, 182, 199, 200, 201, 202, 205, 214, 219, 224, 225, 227, 244, 245, 246, 247, 250, 259, 264, 269, 270, 274, 276, 287, 288, 289], "mutual": 276, "mx": [274, 287], "my": [32, 42, 77, 87, 123, 133, 168, 178, 213, 223, 258, 268, 272, 274, 285, 287, 289], "mybasi": [36, 81, 127, 172, 217, 262], "myself": [32, 77, 123, 168, 213, 258], "mysteri": [274, 287, 288, 292], "n": [26, 29, 71, 74, 117, 120, 162, 165, 207, 210, 252, 255, 273, 276, 286], "n_class": 276, "n_estim": [274, 287], "n_featur": 276, "nail": [290, 291], "name": [1, 18, 19, 20, 21, 29, 33, 36, 42, 46, 63, 64, 65, 66, 74, 78, 81, 87, 92, 109, 110, 111, 112, 120, 124, 127, 133, 137, 154, 155, 156, 157, 165, 169, 172, 178, 182, 199, 200, 201, 202, 210, 214, 217, 223, 227, 244, 245, 246, 247, 255, 259, 262, 268, 273, 274, 276, 286, 287, 289, 291], "named_paramet": 276, "namespac": [20, 65, 111, 156, 201, 246], "nan": [32, 77, 123, 168, 213, 258, 273, 286], "narrow": 289, "nativ": [31, 76, 122, 167, 212, 257], "natur": [271, 272, 273, 274, 276, 282, 285, 286, 287, 288, 290, 291], "nausea": 288, "navig": [276, 288, 292], "nbia": 276, "ndarrai": [32, 77, 123, 168, 213, 258], "nearbi": [288, 289, 291, 292], "nearest": [273, 286, 288], "nearli": [274, 287, 288], "neatli": 291, "necessari": [271, 273, 286, 289, 290, 292], "need": [1, 25, 32, 46, 70, 77, 90, 92, 116, 123, 137, 161, 168, 182, 206, 213, 227, 251, 258, 273, 274, 286, 287, 288, 289, 290, 291, 292], "neg": [272, 273, 274, 276, 285, 286, 287, 288, 289, 292], "negative_slop": 276, "neglig": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "neighbor": [273, 286, 288], "neighborhood": [272, 285, 288], "neither": [19, 21, 33, 64, 66, 78, 110, 112, 124, 155, 157, 169, 200, 202, 214, 245, 247, 259, 289, 291], "nell": [36, 81, 127, 172, 217, 262], "nerd": 288, "ness": [273, 276, 286], "nest": [1, 29, 46, 74, 92, 120, 137, 165, 182, 210, 227, 255, 273, 276, 286], "nesterov": 276, "net": [36, 38, 81, 83, 127, 129, 172, 174, 217, 219, 262, 264], "netflix": [272, 274, 285, 287], "network": [271, 272, 273, 285, 286, 293], "networkx": 276, "neural": [271, 273, 286, 292], "neuron": [276, 290, 291], "neutral": 292, "never": [32, 77, 123, 168, 213, 258, 276, 289, 290, 292], "new": [42, 87, 90, 133, 178, 223, 268, 271, 272, 274, 276, 281, 285, 287, 288, 289, 290, 291, 292], "new_ma": [32, 77, 123, 168, 213, 258], "newli": 292, "newlin": [31, 76, 122, 167, 212, 257], "next": [272, 273, 276, 284, 285, 286, 288, 289, 290, 291, 292, 294], "nice": [274, 276, 287], "nichol": [36, 81, 127, 172, 217, 262], "nichola": [36, 81, 127, 172, 217, 262], "nick": [36, 81, 127, 172, 217, 262], "nicola": [36, 81, 127, 172, 217, 262], "night": 291, "nightclub": 276, "nlet": 276, "no_grad": 276, "node": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256, 276, 289, 290], "node_color": 276, "node_s": 276, "nois": [276, 291], "noisi": [274, 276, 287, 288], "noisier": 289, "nomask": [32, 77, 123, 168, 213, 258], "nomin": [273, 286], "non": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 273, 274, 276, 286, 287, 289, 290, 291, 292], "none": [36, 81, 127, 172, 217, 262, 273, 274, 276, 286, 287], "noninfring": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "nor": [19, 21, 33, 64, 66, 78, 110, 112, 124, 155, 157, 169, 200, 202, 214, 245, 247, 259, 291], "normal": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 271, 272, 274, 276, 285, 287, 288, 289, 291, 293], "north": [276, 288], "nose": [288, 289, 291], "notabl": [32, 77, 123, 168, 213, 258], "note": [24, 69, 115, 160, 205, 250, 272, 274, 276, 285, 287, 289, 292], "notebook": [24, 69, 90, 115, 160, 205, 250, 276, 281, 282, 289, 290, 292], "noth": [20, 31, 65, 76, 111, 122, 156, 167, 201, 212, 246, 257, 272, 274, 276, 285, 287, 289], "notic": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269, 276, 288, 289, 291], "novel": 292, "now": [31, 32, 42, 76, 77, 87, 122, 123, 133, 167, 168, 178, 212, 213, 223, 257, 258, 268, 272, 274, 276, 285, 287, 289, 291, 292], "np": [26, 71, 117, 162, 207, 252, 273, 276, 286], "np_featur": 276, "np_target": 276, "npellegrino": [36, 81, 127, 172, 217, 262], "npm": [29, 30, 31, 74, 75, 76, 120, 121, 122, 165, 166, 167, 210, 211, 212, 255, 256, 257, 284, 294], "nsize": 276, "nuanc": [274, 276, 287, 292], "nugget": [36, 81, 127, 172, 217, 262], "null": 276, "num_class": 276, "num_epoch": 276, "number": [31, 76, 122, 167, 212, 257, 272, 273, 276, 285, 286, 288, 289, 290, 291, 292], "numel": 276, "numer": [32, 77, 123, 168, 213, 258, 274, 276, 287, 290], "numpi": [26, 71, 117, 162, 207, 252, 276], "numpydocstr": [38, 83, 129, 174, 219, 264], "nutrient": 288, "nutrit": [274, 276, 287, 288], "nvidia": [276, 290], "nx": 276, "ny": [273, 286], "o": [32, 77, 123, 168, 213, 258, 273, 286], "object": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 276, 285, 288, 289, 290], "observ": [276, 288, 290, 291], "obstacl": 289, "obtain": [1, 22, 28, 33, 35, 37, 46, 67, 73, 78, 80, 82, 92, 113, 119, 124, 126, 128, 137, 158, 164, 169, 171, 173, 182, 203, 209, 214, 216, 218, 227, 248, 254, 259, 261, 263], "obviou": [276, 288], "occam": 276, "occasion": [273, 286], "occurr": 288, "ocean": [273, 286], "odd": [273, 286, 288], "off": [23, 24, 25, 68, 69, 70, 114, 115, 116, 159, 160, 161, 204, 205, 206, 249, 250, 251, 273, 274, 276, 286, 287, 288, 289, 290, 291], "offer": [274, 287, 290, 292], "offic": [274, 276, 287, 289], "offici": 290, "often": [33, 78, 124, 169, 214, 259, 272, 273, 274, 276, 282, 285, 286, 287, 288, 289, 290, 291, 292], "oftentim": 271, "ok": 288, "okai": [271, 274, 276, 287], "old": [32, 77, 123, 168, 213, 258, 276, 291, 292], "old_ma": [32, 77, 123, 168, 213, 258], "older": [276, 291], "oliph": [32, 77, 123, 168, 213, 258], "onc": [274, 276, 287, 289, 290, 291, 292], "ondrej": [36, 81, 127, 172, 217, 262], "one": [1, 20, 24, 32, 46, 65, 69, 77, 92, 111, 115, 123, 137, 156, 160, 168, 182, 201, 205, 213, 227, 246, 250, 258, 272, 273, 274, 285, 286, 287, 288, 289, 290, 291, 292], "one_hot": 276, "one_hot_label": 276, "one_hot_numpi": 276, "one_hot_pytorch": 276, "one_hot_target": 276, "ones": [273, 274, 276, 286, 287, 288, 289, 290, 292], "ongo": 276, "onli": [32, 77, 123, 168, 213, 258, 271, 273, 274, 276, 286, 287, 289, 290, 291, 292], "onlin": 276, "onto": [42, 87, 133, 178, 223, 268], "open": [29, 74, 90, 120, 165, 210, 255, 271, 276, 289], "oper": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 288, 291], "opinion": [273, 274, 276, 286, 287, 288, 289, 292], "opportun": 289, "opposit": [276, 288, 291], "optim": [271, 272, 282, 285, 288, 293], "optimize_and_plot": 276, "optimizernam": 276, "optimum": 276, "option": [29, 32, 74, 77, 120, 123, 165, 168, 210, 213, 255, 258, 273, 274, 276, 286, 287, 288, 289, 290], "orang": [276, 291], "orchestra": [273, 286], "order": [1, 46, 92, 137, 182, 227, 274, 276, 287, 288, 289, 291, 292], "orderli": 289, "ordin": [273, 286], "org": [24, 31, 32, 36, 69, 76, 77, 81, 115, 122, 123, 127, 160, 167, 168, 172, 205, 212, 213, 217, 250, 257, 258, 262], "organ": [1, 46, 92, 137, 182, 227, 272, 273, 274, 276, 282, 285, 286, 287, 288, 289, 290, 292], "organic_carbon": 276, "orient": [273, 286, 291], "origami": 288, "origin": [1, 18, 27, 32, 33, 42, 46, 63, 72, 77, 78, 87, 92, 109, 118, 123, 124, 133, 137, 154, 163, 168, 169, 178, 182, 199, 208, 213, 214, 223, 227, 244, 253, 258, 259, 268, 273, 274, 276, 286, 287, 288, 291], "oscil": 276, "other": [1, 18, 19, 21, 22, 25, 28, 33, 35, 37, 38, 43, 46, 63, 64, 66, 67, 70, 73, 78, 80, 82, 83, 88, 90, 92, 109, 110, 112, 113, 116, 119, 124, 126, 128, 129, 134, 137, 154, 155, 157, 158, 161, 164, 169, 171, 173, 174, 179, 182, 199, 200, 202, 203, 206, 209, 214, 216, 218, 219, 224, 227, 244, 245, 247, 248, 251, 254, 259, 261, 263, 264, 269, 271, 273, 274, 276, 282, 284, 286, 287, 288, 289, 291, 292, 294], "other_paramet": 276, "otherwis": [1, 18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 46, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 92, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 137, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 182, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 227, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "our": [42, 87, 133, 178, 223, 268, 273, 274, 284, 286, 287, 289, 290, 291, 292, 294], "out": [18, 19, 21, 22, 23, 26, 28, 31, 32, 33, 35, 37, 38, 43, 63, 64, 66, 67, 68, 71, 73, 76, 77, 78, 80, 82, 83, 88, 109, 110, 112, 113, 114, 117, 119, 122, 123, 124, 126, 128, 129, 134, 154, 155, 157, 158, 159, 162, 164, 167, 168, 169, 171, 173, 174, 179, 199, 200, 202, 203, 204, 207, 209, 212, 213, 214, 216, 218, 219, 224, 244, 245, 247, 248, 249, 252, 254, 257, 258, 259, 261, 263, 264, 269, 271, 272, 273, 276, 285, 286, 288, 289, 290, 291, 292], "out_featur": 276, "outcom": [272, 274, 285, 287, 288], "outdoor": [282, 288], "outer": 276, "outlier": [274, 276, 287, 288], "outlin": [274, 287, 291], "output": [1, 25, 29, 46, 70, 74, 92, 116, 120, 137, 161, 165, 182, 206, 210, 227, 251, 255, 273, 286, 290, 292, 293], "output_tensor": 276, "outsid": [274, 287, 289, 291], "outward": 291, "oven": [273, 286, 289, 290], "over": [1, 46, 92, 137, 182, 227, 273, 274, 276, 286, 287, 289, 290, 291, 292], "overal": [274, 276, 287, 288, 289, 290, 291, 292], "overburden": 290, "overcom": 276, "overcook": [274, 276, 287, 289], "overfit": [282, 288, 291, 292], "overli": 289, "overload": 289, "oversampl": [273, 286], "overshoot": [276, 289], "overview": [24, 69, 115, 160, 205, 250, 273, 286], "overwhelm": [271, 290, 292], "overwrit": 292, "own": [1, 20, 46, 65, 92, 111, 137, 156, 182, 201, 227, 246, 273, 274, 286, 287, 289, 290, 291, 292], "owner": [18, 43, 63, 88, 109, 134, 154, 179, 199, 224, 244, 269, 274, 287], "ox": [33, 78, 124, 169, 214, 259], "p": [29, 74, 120, 165, 210, 255, 276], "pace": [274, 276, 287, 289], "pack": [273, 274, 286, 287, 288, 289, 290], "packag": [20, 27, 30, 42, 65, 72, 75, 87, 111, 118, 121, 133, 156, 163, 166, 178, 201, 208, 211, 223, 246, 253, 256, 268, 271, 274, 276, 284, 287, 289, 290, 292, 294], "pad": [271, 292], "page": [23, 24, 25, 30, 32, 68, 69, 70, 75, 77, 114, 115, 116, 121, 123, 159, 160, 161, 166, 168, 204, 205, 206, 211, 213, 249, 250, 251, 256, 258, 273, 274, 276, 284, 286, 287, 291, 292, 294], "pai": 289, "paint": [274, 287, 288, 289, 290, 291], "pair": [288, 289], "pairwis": [273, 286], "pallet": [19, 64, 110, 155, 200, 245], "pan": [273, 286, 288], "panda": 276, "pandoc": [30, 75, 121, 166, 211, 256], "panel": [274, 287], "pant": 288, "pantri": 290, "paper": [273, 274, 276, 286, 287, 288, 291], "paragraph": 292, "parallel": 290, "param": [29, 74, 120, 165, 210, 255, 276], "paramet": [273, 286, 289, 291], "parent": [274, 276, 287, 288], "park": [273, 274, 286, 287, 288, 289, 291], "parmesan": 288, "parquet": [273, 286], "pars": [1, 46, 92, 137, 182, 227], "parser": [1, 29, 30, 31, 46, 74, 75, 76, 92, 120, 121, 122, 137, 165, 166, 167, 182, 210, 211, 212, 227, 255, 256, 257], "part": [1, 32, 33, 46, 77, 78, 92, 123, 124, 137, 168, 169, 182, 213, 214, 227, 258, 259, 288, 289, 290, 291, 292], "parti": [272, 273, 274, 285, 286, 287, 288, 290, 291, 292], "partial": [273, 286, 289], "particip": 289, "particular": [18, 19, 21, 22, 23, 28, 32, 33, 35, 37, 38, 43, 63, 64, 66, 67, 68, 73, 77, 78, 80, 82, 83, 88, 109, 110, 112, 113, 114, 119, 123, 124, 126, 128, 129, 134, 154, 155, 157, 158, 159, 164, 168, 169, 171, 173, 174, 179, 199, 200, 202, 203, 204, 209, 213, 214, 216, 218, 219, 224, 244, 245, 247, 248, 249, 254, 258, 259, 261, 263, 264, 269, 276, 289, 291, 292], "particularli": [290, 291, 292], "partit": 291, "pass": [1, 46, 92, 137, 182, 227, 273, 274, 286, 287, 288, 289, 290, 291, 292], "passport": [274, 287], "past": [274, 276, 287, 289, 290, 292], "pasta": [274, 276, 287, 288, 289], "pastri": [289, 290], "path": [20, 25, 65, 70, 111, 116, 156, 161, 201, 206, 246, 251, 274, 276, 287, 288, 289, 292], "patholog": [31, 76, 122, 167, 212, 257], "pathwai": [1, 46, 92, 137, 182, 227, 289], "patienc": [274, 287], "patient": [274, 287, 288], "pattern": [272, 274, 276, 285, 287, 289, 290, 292], "paul": [32, 36, 77, 81, 123, 127, 168, 172, 213, 217, 258, 262], "pauli": [38, 83, 129, 174, 219, 264], "paus": 290, "pav": [38, 83, 129, 174, 219, 264], "pawel": [36, 81, 127, 172, 217, 262], "payload": [1, 46, 92, 137, 182, 227], "payment": [274, 287], "pca": [273, 286], "pd": [273, 276, 286], "peak": 289, "pear": 276, "pedal": 289, "peek": [274, 287], "pellegrino": [36, 81, 127, 172, 217, 262], "pelleti": [36, 81, 127, 172, 217, 262], "penal": 276, "pencil": [288, 291], "peopl": [36, 81, 127, 172, 217, 262, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "pepperoni": [273, 286], "per": [32, 77, 123, 168, 213, 258, 273, 274, 282, 286, 287, 291], "perceiv": 291, "percentag": [272, 273, 274, 285, 286, 287, 288], "percentil": [273, 286], "percept": 292, "perez": [36, 81, 127, 172, 217, 262], "perfect": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291], "perfectli": [274, 276, 287, 288, 290, 291], "perform": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 282, 285, 286, 289, 291, 292, 293], "perhap": [272, 276, 285], "period": 292, "permiss": [18, 19, 21, 22, 28, 33, 35, 37, 63, 64, 66, 67, 73, 78, 80, 82, 109, 110, 112, 113, 119, 124, 126, 128, 154, 155, 157, 158, 164, 169, 171, 173, 199, 200, 202, 203, 209, 214, 216, 218, 244, 245, 247, 248, 254, 259, 261, 263], "permit": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "perpendicular": 288, "perplex": [90, 271], "person": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263, 271, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "perspect": [274, 287, 288], "pet": [273, 286, 288, 291], "peter": [27, 72, 118, 163, 208, 253], "ph": 276, "phase": [42, 87, 133, 178, 223, 268, 274, 276, 287], "philipp": [27, 72, 118, 163, 208, 253], "philipson": [36, 81, 127, 172, 217, 262], "phone": [273, 274, 286, 287, 288, 289, 290, 292], "photo": [272, 273, 276, 285, 286, 287, 288, 289, 290, 291, 292], "photograph": [273, 286, 291], "photographi": 291, "photoshop": [273, 286], "phrase": [42, 87, 133, 178, 223, 268, 292], "phu": [36, 81, 127, 172, 217, 262], "physic": 276, "pi": [31, 76, 122, 167, 212, 257], "pianist": [274, 287], "pick": [273, 274, 286, 287, 288, 289, 290, 291, 292], "pictur": [32, 77, 123, 168, 213, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 291, 292], "pie": 292, "piec": [271, 272, 276, 285, 287, 288, 289, 291, 292], "pierr": [32, 77, 123, 168, 213, 258], "pile": [288, 290, 291, 292], "pilkington": [36, 81, 127, 172, 217, 262], "pinch": 289, "pinpoint": 291, "pip": [271, 276, 281, 290], "pitch": 288, "pitfal": 291, "pixel": [273, 286, 288, 289], "pizza": [273, 274, 286, 287, 288, 289], "pi\u00ebl": [36, 81, 127, 172, 217, 262], "pkg_resourc": [20, 65, 111, 156, 201, 246], "pkgutil": [20, 65, 111, 156, 201, 246], "pl": [36, 81, 127, 172, 217, 262], "place": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 273, 274, 276, 286, 288, 289, 291, 292], "placement": [273, 286, 288], "plai": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291], "plain": [274, 287, 290], "plan": [272, 274, 276, 285, 287, 288, 290], "plant": [273, 274, 286, 287], "plate": [274, 276, 287, 289], "plateau": [274, 287], "platform": [271, 272, 285, 290, 292], "player": [273, 274, 276, 286, 287, 288], "player1": [273, 286], "player2": [273, 286], "playground": [273, 274, 286, 287, 288], "playlist": 292, "pleas": [32, 77, 123, 168, 213, 258], "pleasant": 292, "plot": [26, 71, 117, 162, 207, 252, 274, 276, 282, 287, 292], "plot_error": 276, "plot_model_architectur": 276, "plt": [26, 71, 117, 162, 207, 252, 276], "plu": 292, "plugin": [20, 29, 30, 31, 65, 74, 75, 76, 111, 120, 121, 122, 156, 165, 166, 167, 201, 210, 211, 212, 246, 255, 256, 257], "plumb": 288, "pneumonia": [272, 285], "po": 276, "point": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 273, 274, 276, 286, 287, 289, 290, 291, 292], "polit": [288, 292], "poodl": 289, "pool": [271, 276], "poor": [276, 288, 289], "poorli": [276, 289], "pop": 292, "popcorn": 288, "popul": 288, "popular": [273, 274, 286, 287, 288, 289, 290, 291], "portfolio": 283, "portion": [22, 28, 35, 37, 67, 73, 80, 82, 113, 119, 126, 128, 158, 164, 171, 173, 203, 209, 216, 218, 248, 254, 261, 263, 273, 274, 276, 286, 287, 290], "portrait": [274, 287, 291], "posit": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292, 293], "possibl": [1, 18, 19, 21, 32, 33, 38, 43, 46, 63, 64, 66, 77, 78, 83, 88, 92, 109, 110, 112, 123, 124, 129, 134, 137, 154, 155, 157, 168, 169, 174, 179, 182, 199, 200, 202, 213, 214, 219, 224, 227, 244, 245, 247, 258, 259, 264, 269, 273, 274, 276, 286, 287, 288, 289, 291, 292], "possibli": [1, 46, 92, 137, 182, 227], "post": [26, 71, 117, 162, 207, 252, 273, 274, 286, 287, 289], "postal": 289, "poster": 288, "pot": [274, 287], "potabl": 276, "potenti": [276, 290], "pound": [273, 276, 286], "powder": 276, "power": [24, 69, 115, 160, 205, 250, 272, 274, 276, 285, 287, 289, 290, 292], "practic": [90, 271, 272, 282, 285, 292], "practition": 276, "pre": [274, 276, 282, 287, 292], "preambl": [20, 65, 111, 156, 201, 246], "precis": [272, 276, 282, 285, 289, 290, 291, 292], "pred": 276, "predat": 276, "predefin": [272, 285], "predict": [272, 282, 285, 288, 289, 290, 291, 292], "prefer": [272, 276, 285, 289, 292], "prefil": [32, 77, 123, 168, 213, 258], "pregnant": [274, 287], "preheat": 289, "prematur": 289, "premium": 288, "prep": [272, 274, 285, 287, 289], "prepar": [32, 77, 123, 168, 213, 258, 272, 273, 274, 285, 286, 287, 290, 291], "preprocess": [271, 274, 276, 287], "presenc": [25, 70, 116, 161, 206, 251, 292], "present": [32, 77, 123, 168, 213, 258, 272, 273, 274, 285, 286, 287, 289, 291], "preserv": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 291], "press": 289, "pressur": [274, 287], "pretti": [274, 287], "prettier": [42, 87, 133, 178, 223, 268], "pretzel": 292, "prevent": [274, 276, 282, 287, 288, 289, 290, 292], "preview": [274, 287], "previou": [271, 274, 276, 287, 289, 291, 292], "previous": 292, "price": [272, 276, 285, 288, 289, 290, 292], "primari": [36, 81, 127, 172, 217, 262, 288, 290, 291], "primarili": [1, 46, 92, 137, 182, 227, 291], "princip": 271, "principl": [276, 290], "print": [25, 32, 70, 77, 116, 123, 161, 168, 206, 213, 251, 258, 276, 291], "print_layer_output": 276, "printabl": [1, 46, 92, 137, 182, 227], "prior": [18, 19, 21, 33, 63, 64, 66, 78, 90, 109, 110, 112, 124, 154, 155, 157, 169, 199, 200, 202, 214, 244, 245, 247, 259, 271, 272, 285, 292], "priorit": 289, "prioriti": [274, 287], "privaci": [284, 293, 294], "probabl": [273, 276, 286, 289], "problem": [32, 77, 123, 168, 213, 258, 273, 274, 286, 287, 288, 290, 291, 292], "proce": 290, "proceed": 291, "process": [31, 76, 122, 167, 212, 257, 271, 272, 285], "processor": 290, "procur": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "produc": [1, 46, 92, 137, 182, 227, 276, 282, 288, 289, 290, 291, 292], "product": [18, 19, 21, 33, 63, 64, 66, 78, 109, 110, 112, 124, 154, 155, 157, 169, 199, 200, 202, 214, 244, 245, 247, 259, 272, 273, 274, 285, 286, 287, 288, 290, 291], "profess": [273, 286], "profession": [272, 273, 274, 276, 285, 286, 287], "profici": 290, "profil": [273, 286], "profit": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "program": [1, 46, 92, 137, 182, 227, 271, 290], "progress": [271, 273, 274, 276, 282, 286, 287, 289, 290, 291, 292], "project": [36, 38, 81, 83, 90, 127, 129, 172, 174, 217, 219, 262, 264, 271, 283, 284, 287, 288, 290, 291, 292, 294], "promot": [18, 19, 21, 33, 63, 64, 66, 78, 109, 110, 112, 124, 154, 155, 157, 169, 199, 200, 202, 214, 244, 245, 247, 259, 272, 285, 288], "prompt": 290, "prop_cycl": [26, 71, 117, 162, 207, 252], "propag": [32, 77, 123, 168, 213, 258, 271], "proper": [273, 274, 276, 282, 286, 287, 288], "properli": [1, 24, 46, 69, 92, 115, 137, 160, 182, 205, 227, 250, 272, 274, 276, 285, 287, 288, 289, 290, 292], "properti": [31, 32, 76, 77, 122, 123, 167, 168, 212, 213, 257, 258, 276], "prototyp": 290, "prove": [274, 287], "proven": [289, 291], "provid": [1, 18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 46, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 90, 92, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 137, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 182, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 227, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269, 271, 273, 274, 276, 286, 287, 290, 291, 292], "prune": 292, "pseudo": [1, 46, 92, 137, 182, 227], "pt": [273, 286], "public": [1, 46, 92, 137, 182, 227, 292], "publish": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "pull": 276, "puneet6060": 282, "punish": [272, 274, 285, 287], "purchas": [272, 273, 274, 285, 286, 287, 288], "pure": [273, 276, 286], "purpl": [273, 286], "purpos": [18, 19, 21, 22, 24, 28, 32, 33, 35, 37, 38, 43, 63, 64, 66, 67, 69, 73, 77, 78, 80, 82, 83, 88, 109, 110, 112, 113, 115, 119, 123, 124, 126, 128, 129, 134, 154, 155, 157, 158, 160, 164, 168, 169, 171, 173, 174, 179, 199, 200, 202, 203, 205, 209, 213, 214, 216, 218, 219, 224, 244, 245, 247, 248, 250, 254, 258, 259, 261, 263, 264, 269, 273, 276, 286, 289, 290], "push": [274, 276, 287, 289], "put": [32, 42, 77, 87, 123, 133, 168, 178, 213, 223, 258, 268, 272, 273, 274, 276, 285, 286, 287, 288, 289, 291, 292], "putmask": [32, 77, 123, 168, 213, 258], "puzzl": [289, 291], "py": [20, 32, 42, 65, 77, 87, 111, 123, 133, 156, 168, 178, 201, 213, 223, 246, 258, 268, 276], "pybtex": [35, 80, 126, 171, 216, 261], "pydevd_extension_api": [20, 65, 111, 156, 201, 246], "pydevd_plugin": [20, 65, 111, 156, 201, 246], "pydevd_plugin_plugin_nam": [20, 65, 111, 156, 201, 246], "pygment": [2, 47, 93, 138, 183, 228], "pyhalov": [36, 81, 127, 172, 217, 262], "pyplot": [26, 71, 117, 162, 207, 252, 276], "pyramid": 288, "python": [20, 28, 32, 42, 65, 73, 77, 87, 90, 111, 119, 123, 133, 156, 164, 168, 178, 201, 209, 213, 223, 246, 254, 258, 268, 271, 281], "pythonpath": [20, 65, 111, 156, 201, 246], "pytorch": [271, 282], "pyzmq": [36, 81, 127, 172, 217, 262], "q": [273, 286], "q1": [273, 286], "q2": [273, 286], "q3": [273, 286], "qualiti": [272, 274, 282, 285, 287, 288, 290, 291, 292], "quantiti": [274, 287], "quarter": [273, 286], "queen": 292, "queri": [1, 46, 92, 137, 182, 227, 293], "question": [271, 273, 274, 276, 286, 287, 290, 292, 293], "quick": [32, 77, 123, 168, 213, 258, 273, 274, 276, 286, 287, 288, 289, 290, 292], "quickest": [276, 289], "quickli": [32, 77, 123, 168, 213, 258, 272, 276, 285, 289, 290, 291, 292], "quiet": 288, "quiz": [274, 287], "quizz": 290, "r": [31, 34, 76, 79, 122, 125, 167, 170, 212, 215, 257, 260, 271, 281, 291], "r_": [32, 77, 123, 168, 213, 258], "race": [274, 276, 287, 290], "radio": 276, "radziej": [27, 72, 118, 163, 208, 253], "ragan": [36, 81, 127, 172, 217, 262], "rai": [272, 285], "rain": [274, 276, 287, 288, 292], "rainbow": [273, 286], "raincoat": [274, 287], "rainfal": 288, "raini": [274, 287], "rais": [32, 77, 123, 168, 213, 258], "ram": [289, 290], "ramanujam": [34, 79, 125, 170, 215, 260], "ran": 292, "rand": 276, "randn": [26, 71, 117, 162, 207, 252, 276], "random": [26, 71, 117, 162, 207, 252, 271, 273, 286, 288, 289], "randomli": [273, 276, 286, 289, 292], "rang": [26, 71, 117, 162, 207, 252, 273, 274, 276, 286, 287], "rank": [274, 287], "rapid": [274, 287], "rare": [273, 286, 288, 289, 292], "rate": [273, 282, 286, 288, 290, 291], "rather": [276, 290, 291], "ratio": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 273, 286], "raw": [42, 87, 133, 178, 223, 268, 274, 276, 287, 288, 289, 290, 291], "razor": 276, "rbu": [36, 81, 127, 172, 217, 262], "rcparam": [26, 32, 71, 77, 117, 123, 162, 168, 207, 213, 252, 258], "re": [90, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "reach": [274, 276, 287, 289, 290, 291, 292], "react": [31, 76, 122, 167, 212, 257, 284, 289, 294], "reaction": [272, 285, 289], "read": [42, 87, 133, 178, 223, 268, 271, 273, 274, 276, 286, 287, 288, 291, 292], "readabl": 291, "readi": [271, 274, 287, 288, 289, 290, 291], "readm": 282, "real": [1, 46, 90, 92, 137, 182, 227, 271, 284, 290, 291, 294], "realist": 289, "realiti": [289, 290], "realiz": [32, 77, 123, 168, 213, 258, 276, 289, 292], "realli": [32, 77, 123, 168, 213, 258, 272, 274, 276, 285, 287, 288, 289], "realtor": [273, 286], "rearrang": [288, 290, 292], "reason": [273, 274, 286, 287, 289, 291, 292], "rebound": [273, 286], "recal": [272, 276, 282, 285, 290, 292], "recarrai": [32, 77, 123, 168, 213, 258], "receipt": 288, "receiv": [1, 46, 92, 137, 182, 227, 276, 289, 290, 291, 292], "recent": [272, 276, 285], "recept": 291, "recess": 288, "recip": [27, 72, 118, 163, 208, 253, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 292], "reckless": 289, "recogn": [272, 276, 285, 287, 288, 289, 290, 291, 292], "recognit": [276, 287, 288, 289, 290, 292], "recogniz": 288, "recommend": [90, 271, 272, 274, 276, 281, 285, 287], "record": [273, 286], "recov": 289, "recreat": 291, "recruit": [273, 286], "rectangl": 291, "recur": [291, 292], "recurr": [271, 276, 292], "red": [273, 274, 286, 287, 288, 289, 291], "redistribut": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "redjack": [36, 81, 127, 172, 217, 262], "reduc": [273, 286, 288, 289, 290, 291, 292], "reduct": 271, "redund": [273, 286], "refer": [24, 69, 115, 160, 205, 250, 274, 287, 289, 290, 291, 292], "refin": [272, 274, 285, 287, 289, 290], "reflect": [276, 291, 292], "regardless": [289, 291], "regener": [1, 46, 92, 137, 182, 227], "regexp": [31, 76, 122, 167, 212, 257], "reggi": [32, 77, 123, 168, 213, 258], "region": 291, "regist": [20, 65, 111, 156, 201, 246], "regress": [271, 273, 286, 289], "regular": [24, 31, 32, 69, 76, 77, 115, 122, 123, 160, 167, 168, 205, 212, 213, 250, 257, 258, 273, 276, 282, 286, 288, 290, 291, 292], "regularli": [32, 77, 123, 168, 213, 258], "reinforc": [90, 272, 285], "reitz": [18, 63, 109, 154, 199, 244], "reject": 276, "rel": [31, 76, 122, 167, 212, 257, 276], "relai": [274, 287], "relat": [90, 271, 273, 286, 288, 291, 292], "relationship": [273, 274, 276, 286, 287, 288, 289, 292], "relev": [1, 46, 92, 137, 182, 227, 272, 273, 274, 285, 286, 287, 291, 292], "reli": [276, 287, 289, 292], "reliabl": [274, 287, 288], "reliant": 289, "reload": 290, "relu_pytorch": 276, "relu_pytroch": 276, "remain": [1, 46, 92, 137, 182, 227, 274, 287, 288, 290, 291], "remaind": [1, 46, 92, 137, 182, 227], "remark": 276, "rememb": [32, 77, 90, 123, 168, 213, 258, 271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 291, 292], "remot": 288, "remov": [31, 76, 122, 167, 212, 257, 272, 274, 285, 287, 288, 289, 291, 292], "renam": [42, 87, 133, 178, 223, 268], "render": [24, 29, 30, 31, 69, 74, 75, 76, 115, 120, 121, 122, 160, 165, 166, 167, 205, 210, 211, 212, 250, 255, 256, 257, 290], "renov": 291, "reorder": 276, "repaint": 291, "repair": [273, 286, 288], "repeat": [272, 273, 274, 276, 285, 286, 287, 288, 289, 291], "repeatedli": 276, "repetit": 292, "replac": [291, 292], "replai": 291, "replic": 291, "repo": 90, "report": [36, 81, 90, 127, 172, 217, 262, 274, 276, 287, 288, 290, 292], "repositori": [42, 87, 133, 178, 223, 268, 271, 281], "repres": [1, 46, 92, 137, 182, 227, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "represent": [276, 291], "reproduc": [18, 19, 21, 26, 32, 33, 38, 43, 63, 64, 66, 71, 77, 78, 83, 88, 109, 110, 112, 117, 123, 124, 129, 134, 154, 155, 157, 162, 168, 169, 174, 179, 199, 200, 202, 207, 213, 214, 219, 224, 244, 245, 247, 252, 258, 259, 264, 269, 282], "reptil": 276, "request": [1, 31, 46, 76, 92, 122, 137, 167, 182, 212, 227, 257], "requir": [1, 29, 30, 31, 32, 46, 74, 75, 76, 77, 90, 92, 120, 121, 122, 123, 137, 165, 166, 167, 168, 182, 210, 211, 212, 213, 227, 255, 256, 257, 258, 271, 272, 274, 276, 281, 285, 287, 289, 290, 292], "requires_grad": 276, "requisit": 276, "research": [276, 290], "resembl": 287, "reserv": [18, 21, 33, 38, 43, 63, 66, 78, 83, 88, 109, 112, 124, 129, 134, 154, 157, 169, 174, 179, 199, 202, 214, 219, 224, 244, 247, 259, 264, 269], "reset": [274, 276, 287, 292], "reshap": 290, "residu": [276, 293], "resili": 276, "resist": 289, "resiz": 291, "resnet": [282, 290, 291], "reson": 90, "resourc": [90, 271, 272, 274, 285, 287, 288, 290, 291, 292, 293], "respect": [1, 46, 92, 137, 182, 227, 276], "respond": [272, 273, 285, 286], "respons": [273, 274, 286, 287, 292, 293], "rest": [25, 70, 116, 161, 206, 251, 276, 291], "restaur": [272, 273, 274, 285, 286, 287, 288, 289], "restrict": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263, 272, 285, 291], "result": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 274, 276, 282, 285, 286, 287, 289, 290, 291, 292], "retain": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 291, 292], "retent": [274, 287], "retest": 288, "retrain": [290, 291], "retriev": [1, 46, 92, 137, 182, 227, 289], "return": [1, 29, 32, 46, 74, 77, 92, 120, 123, 137, 165, 168, 182, 210, 213, 227, 255, 258, 274, 276, 287, 288, 290], "reus": [290, 291], "reveal": [291, 292], "revenu": 287, "review": [272, 273, 274, 276, 285, 286, 287, 288, 292], "revis": 292, "revsi": [36, 81, 127, 172, 217, 262], "reward": [272, 285, 292], "rewrit": [32, 77, 123, 168, 213, 258], "rfc": [1, 46, 92, 137, 182, 227], "rfk": [36, 81, 127, 172, 217, 262], "rgb": [273, 286], "rhode": [36, 81, 127, 172, 217, 262], "rhodesmil": [36, 81, 127, 172, 217, 262], "rhythm": 292, "rich": 290, "richer": 291, "rid": [32, 77, 123, 168, 213, 258], "ride": [274, 287, 289, 291, 292], "right": [18, 21, 22, 28, 31, 33, 35, 37, 38, 43, 63, 66, 67, 73, 76, 78, 80, 82, 83, 88, 90, 109, 112, 113, 119, 122, 124, 126, 128, 129, 134, 154, 157, 158, 164, 167, 169, 171, 173, 174, 179, 199, 202, 203, 209, 212, 214, 216, 218, 219, 224, 244, 247, 248, 254, 257, 259, 261, 263, 264, 269, 272, 274, 281, 285, 287, 288, 289, 290, 291, 292], "rigid": [274, 287, 290], "rilei": [36, 81, 127, 172, 217, 262], "rise": 289, "risk": [288, 289], "riski": 289, "rmsprop": 276, "rnn": [271, 276], "road": [274, 276, 287, 289], "robert": [36, 81, 127, 172, 217, 262], "robot": [272, 285, 290], "robust": [27, 72, 118, 163, 208, 253, 276, 289], "robust_scal": [273, 286], "rocha": [36, 81, 127, 172, 217, 262], "rock": [274, 287, 289, 292], "rocket": 90, "rocki": 289, "role": [273, 286, 288, 289, 290], "roll": [273, 286, 288, 289], "rom": [274, 287], "romanc": [274, 287, 292], "ronach": [18, 63, 109, 154, 199, 244], "roof": 291, "room": [273, 274, 276, 286, 287, 288, 289, 290], "root": [20, 65, 111, 156, 201, 246, 273, 276, 286, 288, 289, 292], "root_directori": [20, 65, 111, 156, 201, 246], "rose": 291, "rotat": [276, 290], "rough": [274, 287, 289, 292], "round": [273, 274, 276, 286, 287, 288, 289], "rout": [276, 289], "routin": [276, 288, 292], "row": [273, 276, 286, 289, 290, 292], "rr": [31, 76, 122, 167, 212, 257], "rubber": [274, 287, 291], "rubik": [273, 286], "rubric": [41, 86, 132, 177, 222, 267], "ruin": 289, "rule": [271, 273, 286, 292], "rulebook": [274, 287], "ruler": [274, 287, 288], "run": [25, 42, 70, 87, 90, 116, 133, 161, 178, 206, 223, 251, 268, 271, 272, 274, 281, 285, 287, 288, 289, 290, 291, 292], "runnabl": 90, "runner": [274, 287], "runtim": 290, "rural": 288, "rush": 288, "ryan": [36, 81, 127, 172, 217, 262], "sad": 292, "sadler": [36, 81, 127, 172, 217, 262], "safe": [1, 46, 92, 137, 182, 227, 276, 289], "safeti": [273, 274, 286, 287], "sai": [272, 274, 276, 285, 287, 289, 291, 292], "said": [272, 274, 276, 285, 287, 292], "salad": [288, 289, 291], "salari": [273, 274, 276, 286, 287], "sale": [273, 274, 286, 287, 288, 292], "salesperson": [274, 287], "salt": [272, 274, 276, 285, 287, 288, 289], "salti": [289, 292], "same": [1, 24, 29, 32, 46, 69, 74, 77, 92, 115, 120, 123, 137, 160, 165, 168, 182, 205, 210, 213, 227, 250, 255, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 292], "sampl": [23, 26, 68, 71, 90, 114, 117, 159, 162, 204, 207, 249, 252, 274, 282, 287, 289, 293], "samsung": [36, 81, 127, 172, 217, 262], "sand": [274, 287], "sandbox": [32, 77, 123, 168, 213, 258], "sandwich": [273, 286, 288], "sasha": [32, 77, 123, 168, 213, 258], "sat": 292, "satisfact": [272, 273, 285, 286, 288], "satisfi": 288, "sauc": [288, 289, 290], "save": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256, 273, 274, 276, 286, 287, 288, 289, 291], "saw": [273, 276, 286, 290, 292], "scalabl": [272, 276, 285, 293], "scalar": [273, 286, 290], "scale": [271, 276, 288, 289], "scaled_height": [273, 286], "scaled_pric": [273, 286], "scaled_test": [273, 286], "scaled_train": [273, 286], "scaler": [273, 286], "scaling_info": [273, 286], "scan": [288, 291], "scanner": 289, "scarc": 291, "scatter": [274, 287, 288], "scenario": [272, 273, 274, 285, 286, 287, 289, 290, 291, 292], "scene": [274, 287, 291, 292], "scent": 289, "schedul": [276, 282], "scheme": [273, 286], "school": [273, 286, 288, 289, 290, 292], "scienc": [273, 274, 276, 286, 287, 288, 292], "scientist": [31, 76, 122, 167, 212, 257, 272, 276, 285], "scikit": [32, 77, 123, 168, 213, 258, 276], "scipi": [32, 77, 123, 168, 213, 258], "scissor": [274, 287], "score": [276, 289, 290, 292, 293], "scorekeep": 276, "scorlai": [36, 81, 127, 172, 217, 262], "scott": [36, 81, 127, 172, 217, 262], "scratch": [276, 290, 291], "screen": [273, 286], "screwdriv": 291, "script": [30, 31, 32, 42, 75, 76, 77, 87, 121, 122, 123, 133, 166, 167, 168, 178, 211, 212, 213, 223, 256, 257, 258, 268, 284, 294], "sea": 282, "seahors": 276, "seamlessli": 290, "search": [288, 293], "season": [272, 273, 274, 276, 285, 286, 287, 288, 289], "seat": [273, 274, 286, 287, 289, 290], "second": [273, 274, 286, 287, 288, 289, 290], "secondari": 288, "secret": 292, "section": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 288, 290, 291], "secur": [274, 287, 288, 289, 293], "sed": [36, 81, 127, 172, 217, 262], "see": [23, 24, 25, 26, 29, 30, 32, 38, 42, 68, 69, 70, 71, 74, 75, 77, 83, 87, 114, 115, 116, 117, 120, 121, 123, 129, 133, 159, 160, 161, 162, 165, 166, 168, 174, 178, 204, 205, 206, 207, 210, 211, 213, 219, 223, 249, 250, 251, 252, 255, 256, 258, 264, 268, 271, 273, 274, 276, 281, 284, 286, 287, 288, 289, 290, 291, 292, 294], "seed": [26, 71, 117, 162, 207, 252], "seek": 276, "seeker": 288, "seem": 288, "seen": [274, 276, 287, 289, 292], "select": [32, 42, 77, 87, 123, 133, 168, 178, 213, 223, 258, 268, 271, 272, 285, 290, 291, 293], "self": [32, 77, 123, 168, 213, 258, 282, 289, 293], "sell": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263, 274, 287, 288, 292], "semant": 292, "send": [276, 289], "sender": [1, 46, 92, 137, 182, 227, 274, 287], "senior": [273, 286], "sens": [273, 286, 288, 289, 290, 292], "sensit": [273, 274, 276, 286, 287], "sensor": [273, 286, 290], "sent": [274, 287], "sentenc": [273, 286, 289, 292], "sentiment": [272, 285, 292], "separ": [271, 273, 274, 276, 286, 287, 288, 291, 292], "sequenc": [1, 46, 92, 137, 182, 227, 271, 273, 276, 286, 289, 290], "sequenti": [90, 271], "seri": [32, 77, 123, 168, 213, 258, 274, 287, 289, 291, 292, 293], "serial": [1, 46, 92, 137, 182, 227], "seriou": 276, "serv": [24, 69, 115, 160, 205, 250, 272, 273, 274, 276, 285, 286, 287, 290], "servic": [18, 19, 21, 33, 38, 42, 43, 63, 64, 66, 78, 83, 87, 88, 109, 110, 112, 124, 129, 133, 134, 154, 155, 157, 169, 174, 178, 179, 199, 200, 202, 214, 219, 223, 224, 244, 245, 247, 259, 264, 268, 269, 273, 274, 286, 287, 288, 289, 292, 293], "session": [276, 289], "set": [1, 31, 32, 46, 76, 77, 92, 122, 123, 137, 167, 168, 182, 212, 213, 227, 257, 258, 272, 273, 276, 282, 285, 286, 289, 290, 291, 292], "set_xlim": 276, "set_ylim": 276, "setup": [276, 281, 282, 289], "sever": [271, 274, 276, 287, 290, 291, 292], "sf": [36, 81, 127, 172, 217, 262], "shade": [290, 291], "shader": 276, "shall": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "shallow": [274, 276, 287], "shampoo": 288, "shape": [273, 286, 288, 289, 291], "share": [90, 271, 282, 289, 290, 291, 292], "share_mask": [32, 77, 123, 168, 213, 258], "sharp": [276, 291], "she": [276, 288, 292], "shear": 292, "sheet": 291, "shelf": [288, 292], "shelv": [288, 290], "sheppard": [33, 78, 124, 169, 214, 259], "shi": [36, 81, 127, 172, 217, 262], "shibukawa": [22, 67, 113, 158, 203, 248], "shirt": [273, 276, 286, 288], "shoe": [273, 274, 286, 287, 288, 289], "shoot": [273, 276, 286, 289], "shop": [273, 274, 286, 287, 288, 289, 292], "shopper": 288, "short": [42, 87, 133, 178, 223, 268, 273, 274, 276, 286, 287, 288, 292], "shorter": [273, 276, 286], "shortest": [273, 286, 288], "shot": [276, 289, 292], "should": [0, 25, 29, 42, 45, 70, 74, 87, 91, 116, 120, 133, 136, 161, 165, 178, 181, 206, 210, 223, 226, 251, 255, 268, 271, 274, 276, 287, 289, 290, 291, 292], "shoulder": 289, "shouldn": [32, 77, 123, 168, 213, 258, 276], "shout": 289, "show": [23, 24, 25, 32, 68, 69, 70, 77, 114, 115, 116, 123, 159, 160, 161, 168, 204, 205, 206, 213, 249, 250, 251, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "show_result": 276, "shower": 288, "shreyash": 90, "shreyashg": 90, "shreyashgupta": 281, "shrink": [289, 291], "shuffl": [276, 289], "shut": 289, "sibl": 276, "sick": [273, 274, 286, 287], "side": [276, 288, 289], "sigmoid": [274, 287], "sigmoidbackward0": 276, "sign": [26, 71, 117, 162, 207, 252, 272, 274, 276, 285, 287], "signal": [290, 291, 292], "signifi": 276, "signific": [273, 276, 286, 289, 290, 292], "significantli": [276, 290, 291], "silent": 276, "silicon": 276, "similar": [24, 69, 115, 160, 205, 250, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "similarli": [1, 46, 92, 137, 182, 227, 272, 276, 285, 289, 290, 291, 292], "simon": [36, 81, 127, 172, 217, 262], "simpl": [1, 24, 27, 31, 46, 69, 72, 76, 92, 115, 118, 122, 137, 160, 163, 167, 182, 205, 208, 212, 227, 250, 253, 257, 271, 272, 285, 288, 289, 290, 291, 292], "simple_plot": [32, 77, 123, 168, 213, 258], "simpler": [27, 72, 118, 163, 208, 253, 274, 276, 287, 288, 289, 291, 292], "simplest": [274, 276, 287, 288, 289, 292], "simpli": [90, 272, 276, 285, 290, 291], "simplic": [274, 287, 288, 289, 290, 292], "simplifi": [31, 76, 122, 167, 212, 257, 274, 287, 288, 289, 291, 292], "simultan": [274, 276, 287, 290, 292], "sinc": [1, 46, 92, 137, 182, 227, 271, 289, 290], "singer": [274, 287], "singl": [273, 274, 276, 286, 287, 288, 290, 291, 292], "siri": 289, "sit": [291, 292], "site": [284, 294], "situat": [273, 274, 276, 286, 287, 289], "size": [272, 273, 282, 285, 286, 288, 290, 291], "skeptic": 288, "sketch": 291, "skew": [273, 286, 287], "ski": 291, "skier": 276, "skill": [273, 274, 276, 286, 287, 289, 290, 291], "skimmer": 276, "skip": [273, 276, 286, 288, 291], "sky": [291, 292], "skyscrap": [288, 290], "sleep": [273, 286, 288], "slender": [34, 79, 125, 170, 215, 260], "slice": [288, 292], "slide": [274, 287, 291], "slight": [24, 69, 115, 160, 205, 250, 276, 289, 291], "slightli": [274, 276, 287, 288, 291], "slipper": 289, "slope": [276, 289], "slow": [32, 77, 123, 168, 213, 258, 274, 276, 287, 288, 289, 291], "slower": [32, 77, 123, 168, 213, 258, 274, 276, 287, 289], "slowli": [276, 289, 291], "small": [23, 24, 68, 69, 114, 115, 159, 160, 204, 205, 249, 250, 273, 274, 286, 287, 288, 289, 290, 291], "smaller": [272, 276, 285, 288, 289, 290, 291, 292], "smallest": [272, 285], "smart": [272, 274, 285, 287, 288, 289, 290, 291], "smarter": 289, "smartphon": [290, 291, 292], "smell": 289, "smile": [274, 276, 287], "smith": [273, 286], "smodin": [42, 87, 133, 178, 223, 268], "smooth": [276, 289, 290, 291, 292], "smoothest": 289, "smoothi": 288, "smoothli": [274, 276, 287, 289, 290, 291], "smudg": 291, "snack": [274, 287, 288, 292], "snail": 276, "snow": [276, 288], "so": [1, 22, 25, 28, 31, 32, 33, 35, 37, 42, 46, 67, 70, 73, 76, 77, 78, 80, 82, 87, 92, 113, 116, 119, 122, 123, 124, 126, 128, 133, 137, 158, 161, 164, 167, 168, 169, 171, 173, 178, 182, 203, 206, 209, 212, 213, 214, 216, 218, 223, 227, 248, 251, 254, 257, 258, 259, 261, 263, 268, 274, 276, 287, 289, 290, 291, 292], "soccer": [273, 286], "social": [273, 286, 292], "sock": [274, 287], "soda": 288, "soft": 289, "softli": 289, "softmax": 293, "softmaxbackward0": 276, "softwar": [18, 19, 21, 22, 28, 33, 35, 37, 43, 63, 64, 66, 67, 73, 78, 80, 82, 88, 109, 110, 112, 113, 119, 124, 126, 128, 134, 154, 155, 157, 158, 164, 169, 171, 173, 179, 199, 200, 202, 203, 209, 214, 216, 218, 224, 244, 245, 247, 248, 254, 259, 261, 263, 269, 290], "sole": [289, 291, 292], "solid": 290, "solut": [272, 276, 282, 285, 288, 290], "solv": [272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "some": [1, 18, 23, 24, 26, 32, 36, 46, 63, 68, 69, 71, 77, 81, 92, 109, 114, 115, 117, 123, 127, 137, 154, 159, 160, 162, 168, 172, 182, 199, 204, 205, 207, 213, 217, 227, 244, 249, 250, 252, 258, 262, 273, 274, 281, 283, 286, 288, 289, 290, 291, 292], "someon": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "someth": [273, 276, 286, 288, 289, 290, 291, 292], "sometim": [273, 274, 276, 286, 287, 289, 291, 292], "somewher": 289, "son": [273, 286], "song": [272, 285, 292], "sooner": 289, "sophist": [273, 276, 286, 292], "sort": [36, 81, 127, 172, 217, 262, 272, 274, 276, 285, 287, 288, 289, 290, 291, 292], "sorter": [274, 287, 292], "sou": 290, "sound": [274, 287, 289, 292], "soup": [273, 274, 286, 287], "sourc": [18, 19, 21, 38, 43, 63, 64, 66, 83, 88, 90, 109, 110, 112, 129, 134, 154, 155, 157, 174, 179, 199, 200, 202, 219, 224, 244, 245, 247, 264, 269, 271, 272, 285], "south": 276, "space": [1, 46, 92, 137, 182, 227, 273, 276, 286, 289, 290, 291, 292, 293], "spam": [272, 273, 276, 285, 286, 289, 292], "span": [24, 69, 115, 160, 205, 250, 292], "spanish": [272, 285], "spars": 276, "spatula": [273, 286], "speak": [273, 286, 289, 292], "speaker": 276, "speci": [287, 289, 291], "special": [1, 18, 19, 21, 24, 32, 33, 38, 43, 46, 63, 64, 66, 69, 77, 78, 83, 88, 92, 109, 110, 112, 115, 123, 124, 129, 134, 137, 154, 155, 157, 160, 168, 169, 174, 179, 182, 199, 200, 202, 205, 213, 214, 219, 224, 227, 244, 245, 247, 250, 258, 259, 264, 269, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "specialist": [274, 287], "specif": [1, 18, 19, 21, 24, 33, 46, 63, 64, 66, 69, 78, 92, 109, 110, 112, 115, 124, 137, 154, 155, 157, 160, 169, 182, 199, 200, 202, 205, 214, 227, 244, 245, 247, 250, 259, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "specifi": [1, 29, 46, 74, 92, 120, 137, 165, 182, 210, 227, 255, 273, 276, 286, 290, 291], "spectrum": [276, 291], "speech": [274, 287, 292], "speed": [32, 77, 123, 168, 213, 258, 273, 274, 286, 287, 288, 289, 290, 292], "spell": [273, 286], "spend": 289, "spender": 288, "spent": [274, 287, 290], "spez": [36, 81, 127, 172, 217, 262], "sphinx": [24, 42, 43, 69, 87, 88, 115, 133, 134, 160, 178, 179, 205, 223, 224, 250, 268, 269], "sphinx_book_them": [42, 87, 133, 178, 223, 268], "sphinxcontrib": [43, 88, 134, 179, 224, 269], "spice": [272, 273, 274, 285, 286, 287, 288, 290], "spici": [272, 285], "spike": [273, 286], "spin": 289, "spirit": [273, 286], "spitzer": [27, 72, 118, 163, 208, 253], "split": [1, 42, 46, 87, 92, 133, 137, 178, 182, 223, 227, 268, 273, 282, 286, 288, 289, 290, 292], "spoiler": [29, 74, 120, 165, 210, 255], "spoken": [272, 285, 292], "spong": 289, "spoon": 289, "sport": [273, 276, 286, 288, 289, 291, 292], "spot": [274, 276, 287, 288, 291], "spr": [273, 286], "spread": [273, 274, 282, 286, 287, 288, 291], "spreadsheet": [273, 286, 290], "spring": 289, "sprinkl": [274, 287], "spura": [36, 81, 127, 172, 217, 262], "spy": 291, "sq": [272, 274, 285, 287], "squar": [272, 273, 285, 286, 289, 290, 291], "squash": 289, "squeez": 276, "squirrel": 276, "squish": 289, "src": [31, 42, 76, 87, 122, 133, 167, 178, 212, 223, 257, 268], "stabil": [274, 287], "stabl": [1, 46, 92, 137, 182, 227, 274, 276, 287, 288, 289], "stack": [273, 286, 290, 291], "staff": [274, 287], "stage": [1, 46, 92, 137, 182, 227, 274, 287, 288, 289], "stai": [272, 274, 276, 285, 287, 288, 289, 291, 292], "stalinho": [36, 81, 127, 172, 217, 262], "stamp": 291, "stand": [24, 69, 115, 160, 205, 250, 274, 287, 288, 289, 292], "standard": [272, 274, 276, 285, 287, 289, 292], "standard_scal": [273, 286], "standout": 290, "star": [273, 274, 286, 287], "starri": 291, "start": [20, 24, 25, 32, 36, 65, 69, 70, 77, 81, 90, 111, 115, 116, 123, 127, 156, 160, 161, 168, 172, 201, 205, 206, 213, 217, 246, 250, 251, 258, 262, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "starter": [24, 69, 115, 160, 205, 250], "startup": [272, 285], "stat": [273, 276, 286], "state": [26, 71, 117, 162, 207, 252, 273, 274, 276, 286, 287, 292], "static": [42, 87, 133, 178, 223, 268, 284, 294], "station": [274, 287, 289], "stationari": 276, "statu": [273, 274, 286, 287], "stb": [42, 87, 133, 178, 223, 268], "std": [273, 286], "std_height": [273, 286], "steadi": [274, 276, 287, 289], "steadili": 289, "steak": [274, 287, 291], "steep": [274, 287, 289], "steeper": 276, "steepest": 289, "steer": 289, "stefan": [31, 36, 38, 76, 81, 83, 122, 127, 129, 167, 172, 174, 212, 217, 219, 257, 262, 264], "stem": 292, "stencil": 291, "step": [32, 77, 123, 168, 213, 258, 272, 273, 274, 285, 286, 287, 288, 290, 291, 292], "stephen": [36, 81, 127, 172, 217, 262], "steve": [36, 81, 127, 172, 217, 262], "sticki": [31, 76, 122, 167, 212, 257, 292], "still": [32, 77, 123, 168, 213, 258, 273, 276, 286, 288, 289, 291, 292], "stir": [289, 290], "stochast": 276, "stock": [273, 286, 287, 288, 289, 290, 292], "stop": [273, 274, 276, 282, 286, 287, 288, 292], "storag": [1, 46, 92, 137, 182, 227, 273, 286, 288, 289, 290], "store": [1, 24, 32, 46, 69, 77, 92, 115, 123, 137, 160, 168, 182, 205, 213, 227, 250, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "stori": [32, 77, 123, 168, 213, 258, 273, 274, 286, 287, 288, 292], "storm": 289, "storybook": 292, "storytel": 291, "stove": [274, 287, 290], "straight": [274, 276, 287, 288, 289, 290], "straightforward": [272, 285, 288, 290, 292], "strang": [273, 286], "strategi": [273, 274, 276, 282, 286, 287, 289, 291, 293], "stream": [1, 46, 92, 137, 182, 227], "streamlin": 290, "street": [274, 276, 282, 287, 288, 289, 291], "strength": [274, 276, 287, 288, 289, 290], "stretch": [274, 287, 291], "strict": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 274, 276, 287, 289], "stride": [289, 291], "striker": [273, 286], "string": [1, 46, 92, 137, 182, 227, 276, 289], "strip": [1, 46, 92, 137, 182, 227], "stripe": 291, "strong": [273, 274, 276, 286, 287, 288, 289, 290, 291], "stronger": 289, "strongli": [273, 286, 289], "structur": [1, 20, 23, 24, 46, 65, 68, 69, 92, 111, 114, 115, 137, 156, 159, 160, 182, 201, 204, 205, 227, 246, 249, 250, 272, 276, 285, 288, 290, 291, 293], "struggl": [274, 276, 287, 289, 292], "stu": [36, 81, 127, 172, 217, 262], "stuart": [36, 81, 127, 172, 217, 262], "stuck": [90, 271, 276, 289, 290], "student": [31, 76, 122, 167, 212, 257, 272, 273, 274, 285, 286, 287, 288, 289, 290, 292], "student_data": [273, 286], "student_record": [273, 286], "studi": [272, 273, 274, 285, 286, 287, 288, 289, 292], "studio": 290, "stuff": [288, 292], "style": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 43, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 88, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 134, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 179, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 224, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 269, 273, 274, 276, 286, 287, 288, 289], "stylesheet": [31, 76, 122, 167, 212, 257], "sub": [1, 46, 92, 137, 182, 227, 274, 287], "subarrai": [32, 77, 123, 168, 213, 258], "subbackward0": 276, "subcategori": 292, "subclass": [32, 77, 123, 168, 213, 258], "subject": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263, 273, 274, 286, 287, 288, 290, 291, 292], "sublicens": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "submiss": [273, 286], "submit": 276, "subplot": [26, 71, 117, 162, 207, 252, 276, 288], "subsampl": [274, 287], "subsequ": 291, "subset": 276, "substanti": [22, 28, 32, 35, 37, 67, 73, 77, 80, 82, 113, 119, 123, 126, 128, 158, 164, 168, 171, 173, 203, 209, 213, 216, 218, 248, 254, 258, 261, 263], "substitut": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269, 273, 286], "subtl": [272, 274, 276, 285, 287], "subtop": 291, "subtract": [276, 290], "suburb": 288, "succe": [274, 287, 289], "success": [29, 74, 120, 165, 210, 255, 272, 274, 276, 285, 287, 288, 289], "sudden": [273, 274, 276, 286, 287], "suffer": [276, 289], "suffici": [274, 287, 291], "sugar": [273, 274, 276, 286, 287, 288, 289, 290, 292], "suggest": [32, 77, 90, 123, 168, 213, 258, 271, 276, 288, 289, 290], "suit": [272, 285, 291], "suitabl": [1, 46, 92, 137, 182, 227, 276, 291], "suitcas": [288, 289, 290], "sulfat": 276, "sum": [273, 276, 286], "sumbackward1": 276, "summar": [273, 286, 288, 291, 292, 293], "summari": [29, 74, 120, 165, 210, 255, 288, 290, 292], "summer": [273, 286], "sun": [36, 81, 127, 172, 217, 262, 274, 276, 287], "sunni": [274, 287], "sunscreen": 288, "sunset": 291, "sunshin": 288, "super": [272, 273, 276, 285, 286, 288, 289], "supercharg": 290, "superhero": [274, 287], "supermarket": 288, "supervis": 271, "suppli": [1, 31, 46, 76, 92, 122, 137, 167, 182, 212, 227, 257, 288], "supplier": 276, "support": [25, 31, 42, 70, 76, 87, 116, 122, 133, 161, 167, 178, 206, 212, 223, 251, 257, 268, 276, 290], "suppos": 289, "sure": [26, 32, 71, 77, 117, 123, 162, 168, 207, 213, 252, 258, 273, 274, 276, 286, 287, 289, 290, 291, 292], "surpris": [32, 77, 123, 168, 213, 258], "surrogateescap": [1, 46, 92, 137, 182, 227], "survei": [273, 274, 286, 287], "surveil": 291, "suscept": 276, "suspici": [273, 274, 286, 287, 288], "svn": [32, 77, 123, 168, 213, 258], "swan": 288, "sweater": [274, 287], "sweet": [274, 276, 287, 288, 289, 292], "sweeter": [274, 287], "swimsuit": 288, "swing": 289, "swirl": 291, "swish": 276, "switch": [274, 276, 287, 289, 290], "sy": [20, 65, 111, 156, 201, 246], "syllabl": 292, "sylvain": [36, 81, 127, 172, 217, 262], "symbol": [273, 286], "symptom": [274, 276, 287, 288], "syntax": [2, 24, 30, 47, 69, 75, 93, 115, 121, 138, 160, 166, 183, 205, 211, 228, 250, 256, 292], "synthesi": 293, "synthet": [273, 286], "system": [30, 75, 121, 166, 211, 256, 272, 273, 285, 286, 289, 290, 291, 292], "systemat": [272, 274, 285, 287, 290], "szmek": [36, 81, 127, 172, 217, 262], "t": [1, 26, 31, 32, 36, 46, 71, 76, 77, 81, 90, 92, 117, 122, 123, 127, 137, 162, 167, 168, 172, 182, 207, 212, 213, 217, 227, 252, 257, 258, 262, 271, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "t5": 293, "tabl": [31, 76, 122, 167, 212, 257, 274, 287, 289], "tablespoon": 288, "tackl": [276, 290], "taco": 288, "tag": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256], "tail": [29, 74, 120, 165, 210, 255, 273, 274, 276, 286, 287], "tailor": 290, "take": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 274, 285, 286, 287, 288, 289, 290, 291, 292], "taken": [273, 286], "takowl": [36, 81, 127, 172, 217, 262], "talent": 276, "talk": [289, 292], "tall": [273, 274, 276, 286, 287], "taller": [273, 286, 289], "tallest": [273, 286, 289, 291], "tambourin": [273, 286], "tanh": 276, "tank": 290, "target": [271, 273, 276, 286, 290], "task": [272, 276, 285, 287, 288, 289, 290, 291, 292], "tast": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 292], "taster": [274, 287], "taylor": [36, 81, 127, 172, 217, 262], "tea": [273, 286], "teach": [272, 276, 285, 289, 290, 291, 292], "teacher": [274, 276, 287, 289, 290, 292], "team": [36, 38, 81, 83, 127, 129, 172, 174, 217, 219, 262, 264, 272, 273, 274, 285, 286, 287, 288, 289, 290], "teaspoon": [288, 289], "technic": [90, 274, 276, 287, 288, 290], "techniqu": [271, 272, 276, 282, 285], "teenag": [273, 286], "teeth": 292, "telephon": [276, 289], "tell": [272, 273, 276, 285, 286, 288, 289, 290, 291, 292], "telstra": [36, 81, 127, 172, 217, 262], "temp": [273, 286], "temperatur": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 292, 293], "tempor": 292, "temporari": [32, 77, 123, 168, 213, 258], "temporarili": 292, "ten": 276, "tend": 276, "tensor": 271, "tensordataset": 276, "tensorflow": [271, 290], "term": [272, 274, 285, 287, 290, 291, 292], "termin": [1, 46, 92, 137, 182, 227, 290], "terminologi": 271, "terrain": [276, 289], "terribl": [274, 287], "test": [31, 32, 76, 77, 122, 123, 167, 168, 212, 213, 257, 258, 272, 273, 282, 285, 286, 288, 289, 290, 291, 292, 293], "test_height": [273, 286], "tester": [274, 287], "tex": [26, 31, 71, 76, 117, 122, 162, 167, 207, 212, 252, 257], "text": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 24, 25, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 69, 70, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 115, 116, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 160, 161, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 205, 206, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 250, 251, 271, 276, 289, 290, 291, 293], "textbook": [274, 276, 287], "textur": [272, 273, 285, 286, 288, 290, 291], "thai": [272, 285], "than": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "thank": 290, "thankfulli": 276, "theater": [290, 292], "thei": [24, 29, 32, 42, 69, 74, 77, 87, 115, 120, 123, 133, 160, 165, 168, 178, 205, 210, 213, 223, 250, 255, 258, 268, 271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "them": [1, 20, 42, 46, 65, 87, 92, 111, 133, 137, 156, 178, 182, 201, 223, 227, 246, 268, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "theme": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 42, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 87, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 133, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 178, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 223, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 268, 276, 288, 292], "theoret": 271, "theori": [18, 19, 21, 33, 38, 43, 63, 64, 66, 78, 83, 88, 109, 110, 112, 124, 129, 134, 154, 155, 157, 169, 174, 179, 199, 200, 202, 214, 219, 224, 244, 245, 247, 259, 264, 269], "therefor": 276, "thermomet": [276, 289], "thermostat": 289, "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120, 122, 123, 124, 126, 127, 128, 129, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 167, 168, 169, 171, 172, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 212, 213, 214, 216, 217, 218, 219, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 257, 258, 259, 261, 262, 263, 264, 268, 269, 270, 272, 273, 274, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294], "thick": 276, "thing": [1, 25, 32, 46, 70, 77, 92, 116, 123, 137, 161, 168, 182, 206, 213, 227, 251, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "think": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "third": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 274, 276, 287, 288, 289], "thirti": [273, 286], "thoma": [36, 81, 127, 172, 217, 262], "thorough": [273, 274, 286, 287], "thoroughli": 288, "those": [1, 24, 46, 69, 92, 115, 137, 160, 182, 205, 227, 250, 273, 274, 276, 286, 287, 289, 290, 291, 292], "thought": [289, 290, 292], "thousand": [272, 285, 288, 292], "thread": [274, 287], "three": [1, 46, 92, 137, 182, 227, 273, 274, 286, 287, 288, 291], "threshold": [273, 286], "through": [1, 46, 90, 92, 137, 182, 227, 271, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "throughout": [272, 285, 292], "throw": [31, 76, 122, 167, 212, 257, 276, 289, 290], "thu": 291, "thumb": 276, "thursdai": [273, 286], "ti": [274, 287, 292], "ticket": [274, 287], "tie": 276, "tiger": [273, 286, 291], "tigger": [36, 81, 127, 172, 217, 262], "tight": [273, 286, 288, 289, 291], "tight_layout": 276, "tile": 291, "time": [1, 36, 42, 46, 81, 87, 92, 127, 133, 137, 172, 178, 182, 217, 223, 227, 262, 268, 272, 274, 276, 284, 285, 287, 288, 289, 290, 291, 292, 294], "timer": 289, "timeseri": [32, 77, 123, 168, 213, 258], "timestamp": [272, 285], "tinbrain": [36, 81, 127, 172, 217, 262], "tini": [276, 288, 289, 291], "tip": [289, 290, 291, 292], "titl": [273, 276, 286, 292], "tm": [31, 76, 122, 167, 212, 257], "tn": [274, 287], "to_numpi": 276, "todai": [272, 274, 285, 287, 292], "togeth": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "toi": [273, 274, 286, 287], "toiletri": [274, 287, 288], "token": [29, 74, 120, 165, 210, 255, 292], "tokyo": [273, 286], "told": [272, 285], "tollerud": [36, 81, 127, 172, 217, 262], "tomato": [273, 274, 286, 287, 289], "tommi": 276, "tomorrow": [274, 276, 287], "tomspur": [36, 81, 127, 172, 217, 262], "too": [273, 274, 276, 286, 287, 288, 289, 291, 292], "took": 276, "tool": [24, 31, 69, 76, 90, 115, 122, 160, 167, 205, 212, 250, 257, 271, 272, 273, 274, 276, 285, 286, 287, 288, 289, 291, 292], "toolbox": [289, 290], "toolkit": 290, "top": [1, 25, 46, 70, 90, 92, 116, 137, 161, 182, 206, 227, 251, 273, 274, 281, 286, 287, 289, 290, 291], "topic": [23, 68, 114, 159, 204, 249, 271, 272, 285, 287, 291, 292], "torch": [44, 89, 135, 180, 225, 270, 273, 286], "torch_featur": 276, "torch_target": 276, "torchtext": 290, "torchvis": 290, "torsten": [36, 81, 127, 172, 217, 262], "tort": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "toss": [274, 287], "total": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290], "touch": [273, 286, 289], "tough": [271, 274, 287], "tourist": 288, "toward": [274, 287, 289], "towel": 288, "town": [274, 287], "toyota": [273, 286], "tp": [274, 287], "tpu": 276, "trace": [276, 291], "track": [272, 273, 274, 276, 282, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294], "trade": 289, "tradit": [272, 285, 290], "tradtion": 276, "traffic": [273, 276, 284, 286, 289, 291, 294], "trail": [1, 46, 92, 137, 182, 227, 289], "train": [271, 272, 273, 285, 286, 288, 292, 293], "train_height": [273, 286], "trait": 274, "transact": [272, 273, 274, 285, 286, 287, 288], "transfer": [1, 46, 92, 137, 182, 227, 271, 272, 282, 285], "transform": [271, 276, 289, 290, 291], "translat": [276, 289, 291, 292, 293], "transmiss": [1, 46, 92, 137, 182, 227], "transpar": 291, "transport": 290, "trap": 276, "travel": [273, 286, 288, 289], "travi": [32, 36, 77, 81, 123, 127, 168, 172, 213, 217, 258, 262], "treadmil": 288, "treasur": [274, 287, 288, 291], "treat": [25, 70, 116, 161, 206, 251, 272, 276, 285], "treatment": 276, "tree": [271, 273, 286, 288, 291, 292], "trend": [273, 274, 286, 287, 291, 292], "tri": [32, 77, 123, 168, 213, 258, 274, 276, 287, 289, 291], "trial": [272, 285, 289], "triangl": [273, 286], "trick": [276, 290], "tricki": [276, 289], "trickl": 289, "trim": [29, 74, 120, 165, 210, 255, 274, 287, 291, 292], "trio": 288, "trip": [273, 274, 276, 286, 287, 288, 289, 290], "tripl": 288, "triplet": 288, "trivial": 288, "troffa": [27, 28, 35, 43, 72, 73, 80, 88, 118, 119, 126, 134, 163, 164, 171, 179, 208, 209, 216, 224, 253, 254, 261, 269], "troubleshoot": 290, "truck": 291, "true": [29, 32, 74, 77, 120, 123, 165, 168, 210, 213, 255, 258, 273, 274, 276, 286, 287, 288, 292], "truemp": [36, 81, 127, 172, 217, 262], "truemper": [36, 81, 127, 172, 217, 262], "truli": [276, 289], "trunk": [274, 287], "trust": [273, 286, 288], "truth": 276, "try": [20, 31, 32, 65, 76, 77, 90, 111, 122, 123, 156, 167, 168, 201, 212, 213, 246, 257, 258, 272, 273, 274, 276, 282, 285, 286, 287, 288, 289, 290, 291, 292], "tryout": [273, 286], "tryzelaar": [36, 81, 127, 172, 217, 262], "tr\u00f6ger": [27, 72, 118, 163, 208, 253], "tuatara": 276, "tuesdai": [273, 286], "tumbl": 276, "tune": [272, 285, 290, 291, 292, 293], "tupl": [1, 46, 92, 137, 182, 227], "turn": [1, 46, 92, 137, 182, 227, 274, 276, 287, 289, 290, 291], "tutori": 276, "tv": [288, 291], "tweak": [274, 276, 287, 289, 290, 291, 292], "twice": [273, 286], "twin": [273, 286], "twist": [274, 287, 292], "twitter": [284, 294], "two": [1, 24, 25, 32, 38, 46, 69, 70, 77, 83, 92, 115, 116, 123, 129, 137, 160, 161, 168, 174, 182, 205, 206, 213, 219, 227, 250, 251, 258, 264, 271, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "txt": [44, 89, 135, 180, 225, 270, 271, 281, 282], "type": [23, 32, 42, 68, 77, 87, 90, 114, 123, 133, 159, 168, 178, 204, 213, 223, 249, 258, 268, 271, 282], "typic": [272, 274, 276, 285, 287, 288], "u": [36, 81, 127, 172, 217, 262, 272, 273, 276, 285, 286, 289, 290, 291, 292], "uci": [36, 81, 127, 172, 217, 262], "ufunc": [32, 77, 123, 168, 213, 258], "uint8": 276, "uk": [33, 36, 78, 81, 124, 127, 169, 172, 214, 217, 259, 262], "um": 292, "umbrella": [274, 287, 288], "un": [1, 46, 92, 137, 182, 227], "unbias": 288, "uncertain": 288, "unchang": 276, "uncl": 288, "unclear": 90, "uncom": [32, 77, 123, 168, 213, 258], "under": [31, 33, 38, 76, 78, 83, 122, 124, 129, 167, 169, 174, 212, 214, 219, 257, 259, 264, 276, 290, 291], "underag": 289, "undercook": [274, 287], "underestim": [272, 285], "underfit": [274, 287, 288], "underli": 292, "underlin": [39, 40, 41, 84, 85, 86, 130, 131, 132, 175, 176, 177, 220, 221, 222, 265, 266, 267], "underperform": 289, "undersampl": [273, 286], "underscor": [31, 76, 122, 167, 212, 257], "understand": [25, 32, 70, 77, 90, 116, 123, 161, 168, 206, 213, 251, 258, 271, 283, 289, 290], "understood": [32, 77, 123, 168, 213, 258, 290, 292], "underwai": [32, 77, 123, 168, 213, 258], "uneven": 289, "unexplor": 289, "unfold": 292, "unfortun": [32, 77, 123, 168, 213, 258], "unhappi": 276, "unicod": [1, 46, 92, 137, 182, 227], "unifi": 290, "uniform": [273, 276, 286], "uniform_": 276, "uniformli": 292, "unimport": [273, 286, 288, 289], "uniqu": [276, 288, 289, 290, 291, 292], "unit": [273, 274, 286, 287, 288, 290, 292], "univari": [273, 286], "univers": [33, 78, 124, 169, 214, 259], "unknown": [1, 46, 92, 137, 182, 227, 273, 286], "unless": [38, 83, 129, 174, 219, 264, 273, 286], "unlik": [274, 287, 288, 289], "unnecessari": [90, 274, 276, 287, 289, 290, 292], "unpack": 290, "unpickl": [32, 77, 123, 168, 213, 258], "unpleas": [32, 77, 123, 168, 213, 258], "unpopular": 288, "unpredict": [276, 289], "unreli": [274, 287], "unrol": 288, "unseen": [276, 290, 291], "unsign": 276, "unstabl": 276, "unsupervis": 271, "unsur": [274, 276, 287], "until": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 276, 285, 286, 288, 289, 290, 292], "unus": 290, "unusu": [272, 273, 285, 286, 288, 291], "unwant": [273, 286, 292], "up": [32, 77, 123, 168, 213, 258, 272, 273, 274, 276, 285, 286, 287, 289, 290, 291, 292], "upcom": 287, "updat": [32, 44, 77, 89, 123, 135, 168, 180, 213, 225, 258, 270, 288, 292, 293], "uphil": [276, 289], "upon": [271, 276, 291], "upper": 276, "upsid": [274, 276, 287, 288], "upward": [32, 77, 123, 168, 213, 258], "urban": 282, "urgent": [274, 287, 292], "us": [1, 18, 19, 21, 22, 24, 25, 28, 29, 33, 35, 37, 38, 42, 43, 46, 63, 64, 66, 67, 69, 70, 73, 74, 78, 80, 82, 83, 87, 88, 90, 92, 109, 110, 112, 113, 115, 116, 119, 120, 124, 126, 128, 129, 133, 134, 137, 154, 155, 157, 158, 160, 161, 164, 165, 169, 171, 173, 174, 178, 179, 182, 199, 200, 202, 203, 205, 206, 209, 210, 214, 216, 218, 219, 223, 224, 227, 244, 245, 247, 248, 250, 251, 254, 255, 259, 261, 263, 264, 268, 269, 272, 281, 282, 283, 284, 285, 289, 290, 291, 292, 294], "usag": [273, 286, 290], "user": [31, 32, 76, 77, 122, 123, 167, 168, 212, 213, 257, 258, 271, 272, 276, 283, 285, 290, 292], "userwarn": 276, "usual": [273, 274, 276, 286, 287, 288, 291], "utensil": 290, "utf": [31, 76, 122, 167, 212, 257], "util": [29, 74, 120, 165, 210, 255, 276], "v": [8, 10, 36, 53, 55, 81, 99, 101, 127, 144, 146, 172, 189, 191, 217, 234, 236, 262, 271, 273, 286, 290, 292], "v2": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256], "v5": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256], "va": 276, "vacat": [274, 287, 288, 291], "vadim": [36, 81, 127, 172, 217, 262], "vagu": 289, "valid": [1, 29, 46, 74, 92, 120, 137, 165, 182, 210, 227, 255, 272, 282, 285, 288, 293], "validation_loss": 276, "validation_loss_epoch": 276, "validationload": 276, "vallei": [276, 289], "valu": [1, 32, 42, 46, 77, 87, 92, 123, 133, 137, 168, 178, 182, 213, 223, 227, 258, 268, 271, 289, 291, 293], "valueerror": [32, 77, 123, 168, 213, 258], "van": [36, 38, 81, 83, 127, 129, 172, 174, 217, 219, 262, 264, 274, 287, 291], "vanilla": [273, 276, 286], "vanish": 276, "var": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256, 276], "vari": [291, 292], "variabl": [273, 276, 286, 287], "varianc": [273, 274, 286, 287], "variant": 276, "variat": [24, 69, 115, 160, 205, 250, 276, 288, 289], "varieti": [273, 286, 289, 290, 291], "variou": [1, 27, 42, 46, 72, 87, 92, 118, 133, 137, 163, 178, 182, 208, 223, 227, 253, 268, 273, 274, 276, 286, 287, 289, 290, 291, 292], "vast": [276, 290], "ve": [42, 87, 133, 178, 223, 268, 274, 276, 287, 289, 290, 291, 292], "vector": [272, 273, 276, 285, 286, 290], "veget": [272, 273, 285, 286, 288, 290], "vehicl": [290, 291], "vercel": [284, 294], "verdict": [274, 287, 291], "veri": [1, 27, 46, 72, 92, 118, 137, 163, 182, 208, 227, 253, 273, 274, 276, 286, 287, 288, 289, 290, 291, 292], "verif": [274, 287], "verifi": [31, 76, 122, 167, 212, 257, 288, 291], "versatil": [276, 290], "version": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 276, 288, 289, 290, 292, 293], "versu": [274, 287, 290], "verticalalign": 276, "vgg": [282, 290, 291], "via": [1, 46, 92, 137, 182, 227], "vibrant": 291, "video": [272, 273, 285, 286, 289, 290, 292, 293], "view": [31, 32, 76, 77, 122, 123, 167, 168, 212, 213, 257, 258, 273, 274, 284, 286, 287, 288, 291, 294], "viewer": [273, 286, 288], "viewpoint": [274, 287], "villain": 276, "vincent": 291, "violin": [273, 286], "virtanen": [38, 83, 129, 174, 219, 264], "visibl": [1, 46, 92, 137, 182, 227, 291], "vision": 271, "visit": [274, 287, 288, 290, 292], "visual": [90, 271, 274, 287, 289, 290, 291], "visualize_linear_lay": 276, "vital": 290, "voas": [36, 81, 127, 172, 217, 262], "vocabulari": 292, "voic": [288, 289], "volum": [274, 276, 287, 288], "vscode": [6, 7, 9, 11, 12, 13, 14, 15, 16, 31, 51, 52, 54, 56, 57, 58, 59, 60, 61, 76, 97, 98, 100, 102, 103, 104, 105, 106, 107, 122, 142, 143, 145, 147, 148, 149, 150, 151, 152, 167, 187, 188, 190, 192, 193, 194, 195, 196, 197, 212, 232, 233, 235, 237, 238, 239, 240, 241, 242, 257], "w": [32, 77, 123, 168, 213, 258], "w0": 276, "wa": [1, 32, 36, 38, 46, 77, 81, 83, 92, 123, 127, 129, 137, 168, 172, 174, 182, 213, 217, 219, 227, 258, 262, 264, 272, 274, 276, 285, 287, 289, 291, 292], "wai": [1, 18, 19, 21, 32, 33, 38, 43, 46, 63, 64, 66, 77, 78, 83, 88, 92, 109, 110, 112, 123, 124, 129, 134, 137, 154, 155, 157, 168, 169, 174, 179, 182, 199, 200, 202, 213, 214, 219, 224, 227, 244, 245, 247, 258, 259, 264, 269, 271, 272, 273, 274, 276, 281, 285, 286, 287, 288, 289, 290, 291, 292], "wait": [274, 287, 289, 290], "waiter": [273, 286, 289], "wake": [288, 292], "walk": [272, 273, 276, 285, 286, 288, 289, 291], "walkwai": 289, "wall": [273, 286, 291], "wallpap": 291, "walt": [36, 38, 81, 83, 127, 129, 172, 174, 217, 219, 262, 264], "wander": 289, "want": [26, 32, 71, 77, 117, 123, 162, 168, 207, 213, 252, 258, 271, 272, 274, 276, 284, 285, 287, 288, 289, 290, 291, 292, 294], "ward": [36, 81, 127, 172, 217, 262, 288], "warmer": 276, "warmth": 289, "warn": [29, 74, 120, 165, 210, 255, 276], "warranti": [18, 19, 21, 22, 28, 33, 35, 37, 38, 43, 63, 64, 66, 67, 73, 78, 80, 82, 83, 88, 109, 110, 112, 113, 119, 124, 126, 128, 129, 134, 154, 155, 157, 158, 164, 169, 171, 173, 174, 179, 199, 200, 202, 203, 209, 214, 216, 218, 219, 224, 244, 245, 247, 248, 254, 259, 261, 263, 264, 269], "wash": [272, 273, 285, 286, 289, 290], "wasn": 289, "wast": [276, 290], "watch": [272, 274, 276, 285, 287, 288, 291, 292], "watcher": 288, "water": [273, 274, 276, 286, 287, 289], "waterfal": 289, "watermelon": [273, 286], "waw": [36, 81, 127, 172, 217, 262], "wcag": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243], "we": [1, 32, 42, 46, 77, 87, 90, 92, 123, 133, 137, 168, 178, 182, 213, 223, 227, 258, 268, 271, 274, 287, 288, 289, 290, 291, 292], "weak": [273, 276, 286, 288, 289], "wear": [274, 276, 287, 289, 291], "weather": [274, 287, 288, 289, 292], "web": [282, 284, 289, 293, 294], "websit": [284, 288, 290, 292, 294], "wednesdai": [273, 286], "week": [273, 286, 288, 292], "weekend": 288, "weekli": [273, 286], "weigh": [274, 287, 289], "weight": [273, 282, 286, 288, 290, 291, 292, 293], "weight0": 276, "weight1": 276, "weight2": 276, "weight_0": 276, "weight_decai": 276, "weight_grad": 276, "weird": [273, 286, 289], "welcom": 90, "well": [23, 26, 32, 68, 71, 77, 114, 117, 123, 159, 162, 168, 204, 207, 213, 249, 252, 258, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "went": [32, 77, 123, 168, 213, 258, 276, 289, 292], "were": [32, 42, 77, 87, 123, 133, 168, 178, 213, 223, 258, 268, 272, 276, 285, 289, 290, 291, 292], "what": [32, 77, 90, 123, 168, 213, 258, 273, 274, 281, 282, 286, 287, 288, 289, 291, 292], "wheel": [274, 276, 287, 289], "when": [1, 24, 25, 32, 42, 46, 69, 70, 77, 87, 90, 92, 115, 116, 123, 133, 137, 160, 161, 168, 178, 182, 205, 206, 213, 223, 227, 250, 251, 258, 268, 271, 272, 285, 289, 290, 291, 292], "where": [1, 31, 46, 76, 92, 122, 137, 167, 182, 212, 227, 257, 272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "wherea": [24, 69, 115, 160, 205, 250, 276], "whether": [1, 18, 19, 21, 22, 24, 28, 32, 33, 35, 37, 38, 43, 46, 63, 64, 66, 67, 69, 73, 77, 78, 80, 82, 83, 88, 92, 109, 110, 112, 113, 115, 119, 123, 124, 126, 128, 129, 134, 137, 154, 155, 157, 158, 160, 164, 168, 169, 171, 173, 174, 179, 182, 199, 200, 202, 203, 205, 209, 213, 214, 216, 218, 219, 224, 227, 244, 245, 247, 248, 250, 254, 258, 259, 261, 263, 264, 269, 272, 274, 285, 287, 289, 290, 291, 292], "which": [1, 25, 27, 31, 32, 46, 70, 72, 76, 77, 92, 116, 118, 122, 123, 137, 161, 163, 167, 168, 182, 206, 208, 212, 213, 227, 251, 253, 257, 258, 272, 273, 276, 285, 286, 287, 288, 289, 290, 291, 292], "while": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 271, 274, 276, 282, 287, 288, 289, 290, 291, 292], "whip": 289, "whisk": [273, 286, 289], "whisper": 289, "white": [36, 81, 127, 172, 217, 262, 274, 287, 289, 291], "who": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292], "whole": [276, 288, 289, 291], "whom": [22, 28, 33, 35, 37, 67, 73, 78, 80, 82, 113, 119, 124, 126, 128, 158, 164, 169, 171, 173, 203, 209, 214, 216, 218, 248, 254, 259, 261, 263], "why": [31, 32, 76, 77, 90, 122, 123, 167, 168, 212, 213, 257, 258, 273, 274, 286, 287, 288, 289, 290], "wide": [273, 276, 286, 289, 290], "width": [273, 286, 288], "wiki": [32, 77, 123, 168, 213, 258], "wild": 288, "wildli": 276, "wile": [36, 81, 127, 172, 217, 262], "willing": 90, "wilt": [272, 285], "win": [273, 274, 276, 286, 287], "wind": [274, 276, 287, 288, 289], "window": [30, 75, 121, 166, 211, 256, 274, 276, 287, 290, 291], "wine": 288, "wing": 292, "winner": [274, 287], "winter": [273, 286, 288], "wire": [1, 46, 92, 137, 182, 227], "wise": [274, 287, 288, 290], "wish": [32, 77, 123, 168, 213, 258], "with_label": 276, "within": [31, 76, 122, 167, 212, 257, 274, 276, 287, 288, 290, 291, 292], "without": [18, 19, 20, 21, 22, 28, 30, 32, 33, 35, 37, 38, 43, 63, 64, 65, 66, 67, 73, 75, 77, 78, 80, 82, 83, 88, 90, 109, 110, 111, 112, 113, 119, 121, 123, 124, 126, 128, 129, 134, 154, 155, 156, 157, 158, 164, 166, 168, 169, 171, 173, 174, 179, 199, 200, 201, 202, 203, 209, 211, 213, 214, 216, 218, 219, 224, 244, 245, 246, 247, 248, 254, 256, 258, 259, 261, 263, 264, 269, 272, 273, 276, 281, 284, 285, 286, 288, 289, 290, 291, 292, 294], "wm": 276, "wobbl": 289, "wobbli": 289, "wolv": 288, "won": [274, 276, 287, 288, 289, 290, 291], "wonder": [32, 77, 123, 168, 213, 258], "wood": 290, "word": [42, 87, 133, 178, 223, 268, 273, 274, 276, 286, 287, 289, 291, 292], "word2vec": 292, "work": [18, 26, 28, 31, 32, 63, 71, 73, 76, 77, 90, 109, 117, 119, 122, 123, 154, 162, 164, 167, 168, 199, 207, 209, 212, 213, 244, 252, 254, 257, 258, 271, 272, 273, 274, 285, 286, 287, 289, 291, 292], "workaround": [31, 76, 122, 167, 212, 257], "worker": [274, 276, 287, 289, 290, 291], "workflow": [274, 287, 290], "workload": 290, "workspac": [274, 287], "world": [1, 46, 90, 92, 137, 182, 227, 271, 289, 290, 291, 292], "worri": [274, 287, 291], "wors": [273, 286], "worst": [274, 287], "worth": [32, 77, 123, 168, 213, 258, 274, 287], "would": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 272, 273, 276, 285, 286, 289, 290, 291, 292], "wouldn": [32, 77, 123, 168, 213, 258, 273, 276, 286, 289, 290], "wrap": [273, 276, 286], "wrench": 291, "write": [24, 25, 32, 69, 70, 77, 115, 116, 123, 160, 161, 168, 205, 206, 213, 250, 251, 258, 271, 273, 286, 288, 289, 290, 292], "written": [18, 19, 21, 24, 25, 33, 63, 64, 66, 69, 70, 78, 109, 110, 112, 115, 116, 124, 154, 155, 157, 160, 161, 169, 199, 200, 202, 205, 206, 214, 244, 245, 247, 250, 251, 259, 273, 286], "wrong": [273, 274, 276, 286, 287, 289, 290, 292], "wrote": [1, 27, 46, 72, 92, 118, 137, 163, 182, 208, 227, 253, 292], "www": [32, 33, 77, 78, 123, 124, 168, 169, 213, 214, 258, 259, 282], "wyglendowski": [36, 81, 127, 172, 217, 262], "x": [32, 77, 123, 168, 213, 258, 272, 274, 276, 285, 287], "xantar": [36, 81, 127, 172, 217, 262], "xantares09": [36, 81, 127, 172, 217, 262], "xavier": 276, "xgboost": 271, "xl": [273, 286], "xla": 276, "xpu": 276, "xyz": [31, 76, 122, 167, 212, 257], "y": [31, 32, 76, 77, 122, 123, 167, 168, 212, 213, 257, 258, 273, 274, 276, 286, 287], "y0": 276, "y_pred": 276, "yannick": [36, 81, 127, 172, 217, 262], "yannickhold": [36, 81, 127, 172, 217, 262], "ye": [32, 77, 123, 168, 213, 258, 272, 273, 274, 285, 286, 287, 289], "year": [273, 274, 276, 286, 287], "yearbook": [273, 286, 288], "yeast": [274, 287, 289], "yet": [31, 76, 122, 167, 212, 257, 276, 289], "yield": 292, "yml": 271, "yolo": 291, "york": [273, 286], "yoshiki": [22, 67, 113, 158, 203, 248], "you": [23, 24, 25, 26, 29, 30, 32, 42, 44, 68, 69, 70, 71, 74, 75, 77, 87, 89, 90, 114, 115, 116, 117, 120, 121, 123, 133, 135, 159, 160, 161, 162, 165, 166, 168, 178, 180, 204, 205, 206, 207, 210, 211, 213, 223, 225, 249, 250, 251, 252, 255, 256, 258, 268, 270, 271, 273, 274, 281, 284, 286, 287, 288, 289, 290, 291, 292, 294], "young": [273, 286, 288], "your": [20, 24, 25, 26, 31, 32, 65, 69, 70, 71, 76, 77, 90, 111, 115, 116, 117, 122, 123, 156, 160, 161, 162, 167, 168, 201, 205, 206, 207, 212, 213, 246, 250, 251, 252, 257, 258, 271, 272, 273, 274, 281, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294], "yourself": [90, 271, 276, 290, 291], "z": [36, 81, 127, 172, 217, 262], "za": [36, 38, 81, 83, 127, 129, 172, 174, 217, 219, 262, 264], "zachari": [36, 81, 127, 172, 217, 262], "zacharyvoas": [36, 81, 127, 172, 217, 262], "zbigniew": [36, 81, 127, 172, 217, 262], "zbyszek": [36, 81, 127, 172, 217, 262], "zebra": 291, "zero": [32, 77, 123, 168, 213, 258, 273, 286, 289, 291, 292], "zero_grad": 276, "zigzag": 276, "znp8c4pd0r72qm3gq7rpvwn40000gn": 276, "zone": [273, 274, 286, 287], "zoo": [291, 292], "zoom": [273, 276, 286, 291], "zou": [36, 81, 127, 172, 217, 262], "\u0177": 276}, "titles": ["<no title>", "<code class=\"xref py py-mod docutils literal notranslate\"><span class=\"pre\">email</span></code> Package Architecture", "A11Y Dark", "A11Y High Contrast Dark", "A11Y High Contrast Light", "A11Y Light", "Blinds Dark", "Blinds Light", "Github Dark", "Github Dark Colorblind", "Github Dark High Contrast", "Github Light", "Github Light Colorblind", "Github Light High Contrast", "Gotthard Dark", "Gotthard Light", "Greative", "Pitaya Smoothie", "<no title>", "<no title>", "<no title>", "<no title>", "The MIT License (MIT)", "Welcome to your Jupyter Book", "Markdown Files", "Notebooks with MyST Markdown", "Content with notebooks", "<no title>", "<no title>", "markdown-it-container", "markdown-it-deflist", "markdown-it-texmath", "A guide to masked arrays in NumPy", "NCSA Open Source License", "Authors", "<no title>", "Authors", "<no title>", "License for Sphinx", "<no title>", "<no title>", "<no title>", "Translation workflow", "<no title>", "<no title>", "<no title>", "<code class=\"xref py py-mod docutils literal notranslate\"><span class=\"pre\">email</span></code> Package Architecture", "A11Y Dark", "A11Y High Contrast Dark", "A11Y High Contrast Light", "A11Y Light", "Blinds Dark", "Blinds Light", "Github Dark", "Github Dark Colorblind", "Github Dark High Contrast", "Github Light", "Github Light Colorblind", "Github Light High Contrast", "Gotthard Dark", "Gotthard Light", "Greative", "Pitaya Smoothie", "<no title>", "<no title>", "<no title>", "<no title>", "The MIT License (MIT)", "Welcome to your Jupyter Book", "Markdown Files", "Notebooks with MyST Markdown", "Content with notebooks", "<no title>", "<no title>", "markdown-it-container", "markdown-it-deflist", "markdown-it-texmath", "A guide to masked arrays in NumPy", "NCSA Open Source License", "Authors", "<no title>", "Authors", "<no title>", "License for Sphinx", "<no title>", "<no title>", "<no title>", "Translation workflow", "<no title>", "<no title>", "Introduction", "<no title>", "<code class=\"xref py py-mod docutils literal notranslate\"><span class=\"pre\">email</span></code> Package Architecture", "A11Y Dark", "A11Y High Contrast Dark", "A11Y High Contrast Light", "A11Y Light", "Blinds Dark", "Blinds Light", "Github Dark", "Github Dark Colorblind", "Github Dark High Contrast", "Github Light", "Github Light Colorblind", "Github Light High Contrast", "Gotthard Dark", "Gotthard Light", "Greative", "Pitaya Smoothie", "<no title>", "<no title>", "<no title>", "<no title>", "The MIT License (MIT)", "Welcome to your Jupyter Book", "Markdown Files", "Notebooks with MyST Markdown", "Content with notebooks", "<no title>", "<no title>", "markdown-it-container", "markdown-it-deflist", "markdown-it-texmath", "A guide to masked arrays in NumPy", "NCSA Open Source License", "Authors", "<no title>", "Authors", "<no title>", "License for Sphinx", "<no title>", "<no title>", "<no title>", "Translation workflow", "<no title>", "<no title>", "<no title>", "<code class=\"xref py py-mod docutils literal notranslate\"><span class=\"pre\">email</span></code> Package Architecture", "A11Y Dark", "A11Y High Contrast Dark", "A11Y High Contrast Light", "A11Y Light", "Blinds Dark", "Blinds Light", "Github Dark", "Github Dark Colorblind", "Github Dark High Contrast", "Github Light", "Github Light Colorblind", "Github Light High Contrast", "Gotthard Dark", "Gotthard Light", "Greative", "Pitaya Smoothie", "<no title>", "<no title>", "<no title>", "<no title>", "The MIT License (MIT)", "Welcome to your Jupyter Book", "Markdown Files", "Notebooks with MyST Markdown", "Content with notebooks", "<no title>", "<no title>", "markdown-it-container", "markdown-it-deflist", "markdown-it-texmath", "A guide to masked arrays in NumPy", "NCSA Open Source License", "Authors", "<no title>", "Authors", "<no title>", "License for Sphinx", "<no title>", "<no title>", "<no title>", "Translation workflow", "<no title>", "<no title>", "<no title>", "<code class=\"xref py py-mod docutils literal notranslate\"><span class=\"pre\">email</span></code> Package Architecture", "A11Y Dark", "A11Y High Contrast Dark", "A11Y High Contrast Light", "A11Y Light", "Blinds Dark", "Blinds Light", "Github Dark", "Github Dark Colorblind", "Github Dark High Contrast", "Github Light", "Github Light Colorblind", "Github Light High Contrast", "Gotthard Dark", "Gotthard Light", "Greative", "Pitaya Smoothie", "<no title>", "<no title>", "<no title>", "<no title>", "The MIT License (MIT)", "Welcome to your Jupyter Book", "Markdown Files", "Notebooks with MyST Markdown", "Content with notebooks", "<no title>", "<no title>", "markdown-it-container", "markdown-it-deflist", "markdown-it-texmath", "A guide to masked arrays in NumPy", "NCSA Open Source License", "Authors", "<no title>", "Authors", "<no title>", "License for Sphinx", "<no title>", "<no title>", "<no title>", "Translation workflow", "<no title>", "<no title>", "<no title>", "<code class=\"xref py py-mod docutils literal notranslate\"><span class=\"pre\">email</span></code> Package Architecture", "A11Y Dark", "A11Y High Contrast Dark", "A11Y High Contrast Light", "A11Y Light", "Blinds Dark", "Blinds Light", "Github Dark", "Github Dark Colorblind", "Github Dark High Contrast", "Github Light", "Github Light Colorblind", "Github Light High Contrast", "Gotthard Dark", "Gotthard Light", "Greative", "Pitaya Smoothie", "<no title>", "<no title>", "<no title>", "<no title>", "The MIT License (MIT)", "Welcome to your Jupyter Book", "Markdown Files", "Notebooks with MyST Markdown", "Content with notebooks", "<no title>", "<no title>", "markdown-it-container", "markdown-it-deflist", "markdown-it-texmath", "A guide to masked arrays in NumPy", "NCSA Open Source License", "Authors", "<no title>", "Authors", "<no title>", "License for Sphinx", "<no title>", "<no title>", "<no title>", "Translation workflow", "<no title>", "<no title>", "Machine Learning for Dummies \ud83e\udde0", "Chapter 1: Introduction to Machine Learning", "Chapter 2 - Data Fundamentals", "Chapter 3 - Supervised Learning", "Chapter 4 - Unsupervised Learning", "Chapter 5 - Neural Networks Basics", "Chapter 6 - Deep Learning Tools", "Chapter 7 - Convolutional Neural Networks", "Chapter 8 - Sequential Data and RNNs", "Chapter 9 - Modern Deep Learning", "Introduction", "DeepSceneNet: Vision Transformer for Environmental Scene Understanding", "<no title>", "Overview", "Chapter 1: Introduction to Machine Learning", "Chapter 2 - Data Fundamentals", "Chapter 3 - Supervised Learning", "Chapter 4 - Unsupervised Learning", "Chapter 5 - Neural Networks Basics", "Chapter 6 - Deep Learning Tools", "Chapter 7 - Convolutional Neural Networks", "Chapter 8 - Sequential Data and RNNs", "Chapter 9 - Modern Deep Learning", "Overview"], "titleterms": {"": [274, 276, 287], "0": [31, 76, 122, 167, 212, 257, 276], "04": [31, 76, 122, 167, 212, 257], "05": [31, 76, 122, 167, 212, 257], "06": [31, 76, 122, 167, 212, 257], "07": [31, 76, 122, 167, 212, 257], "1": [271, 272, 273, 274, 276, 282, 285, 286, 287, 289], "11": [31, 76, 122, 167, 212, 257], "15": [31, 76, 122, 167, 212, 257], "2": [31, 76, 122, 167, 212, 257, 271, 272, 273, 274, 276, 282, 285, 286, 287, 289], "20": [31, 76, 122, 167, 212, 257], "2017": [31, 76, 122, 167, 212, 257], "2018": [31, 76, 122, 167, 212, 257], "2019": [31, 76, 122, 167, 212, 257], "27": [31, 76, 122, 167, 212, 257], "3": [31, 33, 76, 78, 122, 124, 167, 169, 212, 214, 257, 259, 271, 273, 274, 276, 282, 286, 287, 289], "4": [31, 76, 122, 167, 212, 257, 273, 274, 275, 276, 282, 286, 287, 288, 289], "5": [31, 76, 122, 167, 212, 257, 273, 274, 276, 282, 286, 287, 289], "6": [31, 76, 122, 167, 212, 257, 276, 277, 290], "7": [278, 291], "8": [279, 292], "9": [276, 280, 293], "99": 276, "A": [32, 77, 123, 168, 213, 258, 276], "It": 276, "Not": [36, 81, 127, 172, 217, 262], "One": [273, 276, 286], "The": [1, 22, 46, 67, 92, 113, 137, 158, 182, 203, 227, 248, 272, 276, 285], "Their": 276, "There": 276, "To": [42, 87, 133, 178, 223, 268], "a11i": [2, 3, 4, 5, 47, 48, 49, 50, 93, 94, 95, 96, 138, 139, 140, 141, 183, 184, 185, 186, 228, 229, 230, 231], "about": [90, 271], "abov": 276, "absolut": [274, 287], "acceler": 290, "access": 276, "accuraci": [274, 276, 287], "activ": [276, 289, 290], "adagrad": 289, "adam": 289, "add": [25, 70, 116, 161, 206, 251, 271], "addit": 271, "adjust": 289, "advanc": [271, 273, 286, 289, 291, 292], "advantag": [274, 287, 289], "adventur": 276, "adversari": 289, "ai": 293, "algorithm": [1, 46, 92, 137, 182, 227, 276, 288], "all": 276, "altern": 276, "an": [25, 70, 116, 161, 206, 251, 276], "analogi": [272, 276, 285, 289], "analysi": [273, 286, 288], "analyt": 288, "analyz": 276, "ann": 289, "anomali": [273, 286, 288], "api": [29, 74, 120, 165, 210, 255], "applic": [274, 287, 288, 291, 293], "approv": [274, 287], "apriori": 288, "ar": [271, 276], "architectur": [1, 46, 92, 137, 182, 227, 276, 282, 289, 290, 291, 292, 293], "arrai": [32, 77, 123, 168, 213, 258, 273, 286], "artifici": 289, "artifiti": [272, 285], "assess": [273, 276, 286], "assign": 276, "associ": 288, "assumpt": [274, 287], "attent": 293, "attribut": 276, "augment": 276, "august": [31, 76, 122, 167, 212, 257], "author": [34, 36, 79, 81, 125, 127, 170, 172, 215, 217, 260, 262], "b": 289, "backpropag": 276, "backward": [1, 46, 92, 137, 182, 227, 289, 290], "bag": [274, 287], "balanc": [273, 276, 286], "bar": [273, 286], "base": 288, "baselin": 276, "basic": [273, 274, 276, 286, 287, 288, 289, 290, 291, 292, 293], "basket": 288, "batch": [289, 290], "batch_featur": 276, "batch_label": 276, "befor": [32, 77, 123, 168, 213, 258, 276], "below": 276, "benefit": 290, "best": [273, 274, 276, 286, 288, 289, 290, 291, 293], "better": 276, "between": [272, 276, 285], "bia": [276, 289], "bias": 276, "bin": [273, 286], "binari": [1, 46, 92, 137, 182, 227, 273, 274, 276, 286, 287], "biplot": 288, "blind": [6, 7, 51, 52, 97, 98, 142, 143, 187, 188, 232, 233], "block": [26, 71, 117, 162, 207, 252, 276], "book": [23, 68, 114, 159, 204, 249, 271], "boost": [274, 287], "border": 288, "bottom": 288, "bound": 291, "boundari": [274, 287], "box": [273, 286, 291], "breakdown": 276, "browser": [31, 76, 122, 167, 212, 257], "bsd": [33, 78, 124, 169, 214, 259], "buddi": 276, "build": [271, 276, 290], "built": 290, "c": 289, "calcul": [276, 288, 289, 290], "capac": 276, "case": 288, "categor": [273, 286], "categori": [274, 287], "cdn": [31, 76, 122, 167, 212, 257], "cell": [25, 70, 116, 161, 206, 251], "centroid": 288, "chain": 289, "challeng": 289, "changelog": [31, 76, 122, 167, 212, 257], "channel": 291, "chapter": [272, 273, 274, 275, 276, 277, 278, 279, 280, 285, 286, 287, 288, 289, 290, 291, 292, 293], "charact": 276, "chart": [273, 286], "check": [273, 286], "choos": [273, 276, 286, 288], "citat": [24, 69, 115, 160, 205, 250], "class": [274, 276, 287], "classif": [274, 276, 287, 291, 292], "classifi": [272, 276, 285], "claus": [33, 78, 124, 169, 214, 259], "clean": [273, 286], "club": 276, "cluster": 288, "cnn": [289, 291], "code": [26, 71, 117, 162, 207, 252, 276], "color": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 291], "colorblind": [9, 12, 54, 57, 100, 103, 145, 148, 190, 193, 235, 238], "command": 271, "common": [273, 274, 276, 286, 287, 289], "compar": 292, "comparison": [273, 286, 290], "compat": [1, 46, 92, 137, 182, 227], "compil": [42, 87, 133, 178, 223, 268], "complet": [272, 285], "compon": [33, 78, 124, 169, 214, 259, 274, 287, 288, 290, 291, 292, 293], "compress": 288, "comput": [289, 290, 291], "concept": [274, 276, 287, 288, 289, 291, 293], "confid": 288, "confus": [274, 287], "connect": 289, "consider": [273, 286, 288, 293], "contain": [29, 74, 120, 165, 210, 255], "content": [26, 32, 71, 77, 117, 123, 162, 168, 207, 213, 252, 258, 271], "continu": [274, 276, 287], "contrast": [3, 4, 10, 13, 48, 49, 55, 58, 94, 95, 101, 104, 139, 140, 146, 149, 184, 185, 191, 194, 229, 230, 236, 239], "contribut": [90, 271], "contributor": [34, 79, 125, 170, 215, 260], "control": [1, 46, 92, 137, 182, 227], "converg": [276, 289], "convers": [274, 287], "convolut": [278, 289, 291], "cook": [272, 285], "core": [32, 77, 123, 168, 213, 258, 274, 287, 288, 293], "correct": [274, 287], "correl": [273, 286], "count": 276, "counter": 276, "cours": [90, 271], "covari": 288, "cpu": 290, "creat": [25, 70, 116, 161, 206, 251, 276, 290], "creator": [34, 79, 125, 170, 215, 260], "credit": [274, 287], "criteria": [274, 287, 289], "cross": [274, 276, 287], "curs": 288, "curv": [274, 287], "custom": [274, 287, 288, 290], "d": 289, "dark": [2, 3, 6, 8, 9, 10, 14, 47, 48, 51, 53, 54, 55, 59, 93, 94, 97, 99, 100, 101, 105, 138, 139, 142, 144, 145, 146, 150, 183, 184, 187, 189, 190, 191, 195, 228, 229, 232, 234, 235, 236, 240], "data": [1, 46, 92, 137, 182, 227, 273, 276, 279, 282, 286, 288, 289, 290, 292], "datafram": [273, 286], "dataload": 276, "dataset": [273, 282, 286], "date": [273, 286], "dbscan": 288, "debug": 290, "decai": 276, "decis": [274, 276, 287], "deep": [271, 272, 276, 277, 280, 285, 288, 289, 290, 293], "deepscenenet": 282, "deflist": [30, 75, 121, 166, 211, 256], "delet": [273, 286], "deliver": 282, "deliveri": 276, "dendrogram": 288, "densiti": 288, "depend": [31, 76, 122, 167, 212, 257], "deploy": 293, "depth": [274, 287, 291], "deriv": 276, "descent": [276, 289], "detail": 293, "detect": [273, 274, 286, 287, 288, 291], "develop": [290, 293], "deviat": [273, 286], "devic": [276, 290], "diagnosi": [274, 287, 288], "differ": [32, 77, 123, 168, 213, 258, 271, 274, 276, 287], "digit": 291, "dimension": [273, 286, 288, 291], "dip": 276, "direct": [24, 69, 115, 160, 205, 250], "disadvantag": 289, "discret": [274, 276, 287], "distanc": 288, "distinguish": [272, 285], "distribut": [273, 286, 289], "dive": 288, "dnn": 289, "do": [271, 272, 276, 285], "document": [273, 284, 286, 288, 294], "doe": [272, 276, 285], "domain": [273, 286], "down": 288, "dropout": [276, 289], "dummi": 271, "duplic": [273, 286], "dure": [1, 46, 92, 137, 182, 227], "dynam": 290, "e": 289, "each": [272, 273, 274, 276, 285, 286, 287, 288], "earli": 289, "easi": [274, 287], "edg": 291, "effect": 276, "effici": 289, "eigenvalu": 288, "eigenvector": 288, "elbow": 288, "element": [274, 287], "email": [1, 46, 92, 137, 182, 227], "embed": [273, 286], "encod": [273, 276, 286], "engin": [273, 286], "ensembl": [274, 287], "entropi": 276, "environ": 290, "environment": 282, "epoch": [276, 289], "equat": [274, 287], "error": [274, 276, 287, 289], "essenti": 288, "establish": 276, "estim": 276, "ethic": 293, "evalu": [274, 276, 282, 287, 288, 290], "exampl": [25, 29, 70, 74, 116, 120, 161, 165, 206, 210, 251, 255, 272, 273, 274, 276, 285, 286, 287, 288], "exercis": [272, 273, 276, 285, 286, 287], "experi": 276, "explain": [288, 289], "explan": [276, 288], "exploratori": [273, 286], "extens": 282, "extract": 288, "f1": [274, 287], "face": 291, "faq": [31, 76, 90, 122, 167, 212, 257], "fascin": 276, "featur": [31, 32, 76, 77, 122, 123, 167, 168, 212, 213, 257, 258, 273, 274, 286, 287, 288, 290, 291], "februari": [31, 76, 122, 167, 212, 257], "feed": 289, "feedback": 90, "feedforward": 289, "feel": 276, "fight": 276, "file": [24, 42, 69, 87, 115, 133, 160, 178, 205, 223, 250, 268], "fill": [32, 77, 123, 168, 213, 258], "filter": [273, 286], "final": 276, "find": [273, 276, 286], "fine": [276, 289], "finish": 271, "first": [272, 276, 285], "fit": [274, 287], "fix": [273, 286], "flow": 289, "fnn": 289, "forest": [274, 287], "form": [274, 287], "format": [273, 286], "formula": 276, "forward": [276, 289, 290], "foundat": 271, "framework": 290, "freez": 276, "frequent": 288, "from": 276, "function": [276, 289, 290], "fundament": [271, 273, 286, 288, 290], "gain": [273, 286], "game": 276, "gan": 289, "gener": [276, 288, 289, 293], "get": [271, 276], "gevent_zeromq": [36, 81, 127, 172, 217, 262], "git": [36, 81, 127, 172, 217, 262], "github": [8, 9, 10, 11, 12, 13, 53, 54, 55, 56, 57, 58, 99, 100, 101, 102, 103, 104, 144, 145, 146, 147, 148, 149, 189, 190, 191, 192, 193, 194, 234, 235, 236, 237, 238, 239], "go": 271, "goal": [276, 282], "good": [272, 285], "gotthard": [14, 15, 59, 60, 105, 106, 150, 151, 195, 196, 240, 241], "gpu": 290, "gradient": [274, 276, 287, 289], "graph": 290, "greativ": [16, 61, 107, 152, 197, 242], "green": [36, 81, 127, 172, 217, 262], "ground": 276, "growth": [274, 287], "gru": 292, "guid": [32, 77, 123, 168, 213, 258], "handl": [1, 46, 92, 137, 182, 227, 273, 286], "header": [1, 46, 92, 137, 182, 227], "heatmap": [273, 286], "help": 271, "here": [271, 276], "hidden": [276, 289], "hierarch": 288, "high": [3, 4, 10, 13, 48, 49, 55, 58, 94, 95, 101, 104, 139, 140, 146, 149, 184, 185, 191, 194, 229, 230, 236, 239, 276, 288], "histogram": [273, 286], "histori": [32, 77, 123, 168, 213, 258], "holdout": [274, 287], "hot": [273, 276, 286], "hous": [273, 274, 286, 287], "how": [271, 272, 276, 285, 288], "hunt": 276, "hyperbol": 289, "hyperparamet": [276, 289], "i": [24, 69, 115, 160, 205, 250, 271, 272, 276, 285, 290], "identif": 291, "identifi": [273, 286], "ignor": 276, "imag": [288, 291], "impact": [273, 274, 276, 286, 287, 291], "implement": [273, 274, 276, 286, 287, 288, 289, 290, 291, 292, 293], "import": [273, 274, 276, 286, 287], "improv": 276, "imput": [273, 286], "inconsist": [273, 286], "incorpor": [38, 83, 129, 174, 219, 264], "index": 290, "industri": 288, "inertia": 276, "inform": [273, 286, 288, 289], "initi": [276, 289], "input": [274, 276, 287, 289], "instal": [29, 30, 74, 75, 120, 121, 165, 166, 210, 211, 255, 256, 271, 290], "instruct": 276, "integr": 290, "intellig": [272, 285], "intend": 271, "interact": [273, 286], "intercept": [274, 287], "interpret": [274, 282, 287, 288], "introduc": 276, "introduct": [90, 272, 276, 281, 285, 290], "iqr": [273, 286], "issu": 289, "item": 288, "iter": 289, "j": [31, 76, 122, 167, 212, 257], "januari": [31, 76, 122, 167, 212, 257], "job": [272, 285], "johnni": 276, "journei": 271, "jupyt": [23, 68, 114, 159, 204, 249], "just": 276, "k": 288, "kei": [272, 274, 276, 285, 287, 290, 293], "kitchen": [272, 276, 285], "know": [271, 276], "knowledg": [273, 286], "label": [273, 276, 286], "landscap": 276, "languag": 292, "layer": [276, 289, 290, 291], "lazi": 276, "leaf": [274, 287], "leaki": [276, 289], "leakyrelu": 276, "learn": [24, 69, 90, 115, 160, 205, 250, 271, 272, 274, 275, 276, 277, 280, 282, 285, 287, 288, 289, 290, 291, 293], "learner": [274, 276, 287], "let": 276, "librari": 276, "licens": [22, 29, 30, 31, 33, 38, 67, 74, 75, 76, 78, 83, 113, 120, 121, 122, 124, 129, 158, 165, 166, 167, 169, 174, 203, 210, 211, 212, 214, 219, 248, 255, 256, 257, 259, 264], "life": 289, "lifecycl": [1, 46, 92, 137, 182, 227, 272, 285], "lift": 288, "light": [4, 5, 7, 11, 12, 13, 15, 49, 50, 52, 56, 57, 58, 60, 95, 96, 98, 102, 103, 104, 106, 140, 141, 143, 147, 148, 149, 151, 185, 186, 188, 192, 193, 194, 196, 230, 231, 233, 237, 238, 239, 241], "limit": [274, 276, 287], "line": [273, 274, 276, 286, 287], "linear": [274, 276, 287, 288, 289], "linear_lay": 276, "linkag": 288, "ll": 276, "load": [276, 282, 288, 290], "local": [276, 291], "log": [36, 81, 127, 172, 217, 262, 273, 286], "logist": [274, 287], "long": 289, "loop": [276, 289], "loss": [276, 289, 290], "low": 276, "lower": 276, "lstm": [289, 292], "ma": [32, 77, 123, 168, 213, 258], "machin": [271, 272, 276, 285], "mae": [274, 287], "magic": 276, "main": [32, 77, 123, 168, 213, 258], "mainten": 293, "major": [274, 287], "make": [271, 274, 287], "manag": [289, 290], "manifold": 288, "manipul": [276, 290], "manual": 276, "map": 276, "mari": 276, "markdown": [24, 25, 26, 29, 30, 31, 69, 70, 71, 74, 75, 76, 115, 116, 117, 120, 121, 122, 160, 161, 162, 165, 166, 167, 205, 206, 207, 210, 211, 212, 250, 251, 252, 255, 256, 257], "market": 288, "mask": [32, 77, 123, 168, 213, 258], "maskedarrai": [32, 77, 123, 168, 213, 258], "mathemat": 290, "matplotlib": [32, 77, 123, 168, 213, 258], "matrix": [274, 287, 288], "matter": 276, "max": [273, 286], "me": [31, 76, 122, 167, 212, 257, 271], "mean": [273, 274, 276, 286, 287, 288], "mechan": 293, "median": [273, 286], "medic": [274, 287, 288], "meet": 276, "memor": 276, "memori": [289, 290, 292], "messag": [1, 46, 92, 137, 182, 227], "metadata": [25, 70, 116, 161, 206, 251], "method": [273, 276, 286, 288, 290, 291], "metric": [274, 282, 287, 288, 290], "min": [273, 286], "mini": 289, "minim": 276, "minima": 276, "minimum": 288, "miss": [273, 286], "mit": [22, 67, 113, 158, 203, 248], "ml": [272, 273, 285, 286], "mode": [273, 286], "model": [1, 46, 92, 137, 182, 227, 272, 274, 276, 282, 285, 287, 289, 290, 291, 293], "modern": [280, 289, 293], "modul": [271, 290], "momentum": [276, 289], "monitor": 293, "more": [24, 69, 115, 160, 205, 250], "most": 276, "move": [276, 290], "mse": [274, 276, 287], "mseloss": 276, "multi": [274, 276, 287, 289, 290], "multipl": [274, 276, 287, 291], "myst": [24, 25, 26, 69, 70, 71, 115, 116, 117, 160, 161, 162, 205, 206, 207, 250, 251, 252], "natur": 292, "ncsa": [33, 78, 124, 169, 214, 259], "need": [271, 272, 276, 285], "network": [276, 278, 288, 289, 290, 291, 292], "neural": [276, 278, 289, 290, 291], "neuron": 289, "new": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258, 273, 286], "nn": 276, "node": [31, 76, 122, 167, 212, 257, 274, 287], "nois": 288, "non": 288, "normal": [273, 286], "note": [32, 77, 123, 168, 213, 258], "notebook": [25, 26, 70, 71, 116, 117, 161, 162, 206, 207, 251, 252, 271], "novemb": [31, 76, 122, 167, 212, 257], "now": [36, 81, 127, 172, 217, 262], "number": [274, 287], "numer": [273, 286], "numpi": [32, 77, 123, 168, 213, 258, 273, 286], "object": [282, 291], "octob": [31, 76, 122, 167, 212, 257], "onc": 271, "one": 276, "open": [33, 78, 124, 169, 214, 259, 290], "oper": [276, 290], "optim": [32, 77, 123, 168, 213, 258, 276, 289, 290], "option": 293, "order": [273, 286], "organ": 291, "orthogon": 288, "other": [272, 285, 290], "our": [272, 276, 285], "out": [274, 287], "outlier": [273, 286], "output": [26, 71, 117, 162, 207, 252, 274, 276, 287, 289, 291], "overfit": [274, 276, 287, 289], "overview": [1, 46, 92, 137, 182, 227, 276, 282, 284, 290, 294], "own": 276, "packag": [1, 32, 46, 77, 92, 123, 137, 168, 182, 213, 227, 258], "pad": 291, "pair": [273, 286], "panda": [273, 286], "parallel": [274, 287], "paramet": [274, 276, 287, 288, 290], "park": 276, "part": 276, "pass": 276, "pattern": [273, 286, 288, 291], "pca": 288, "perform": [274, 276, 287, 288, 290], "perplex": 288, "phase": [272, 285], "pipelin": [273, 282, 286], "pitaya": [17, 62, 108, 153, 198, 243], "pitfal": [273, 274, 286, 287], "pixel": 291, "pizza": 276, "plot": [273, 286, 288], "point": 288, "polici": [1, 46, 92, 137, 182, 227], "pool": 291, "pop": 276, "popular": [276, 293], "power": [273, 286], "practic": [273, 274, 276, 286, 287, 288, 289, 290, 291, 293], "pre": [290, 291], "precis": [274, 287], "predict": [273, 274, 276, 286, 287], "prepar": [276, 289, 292, 293], "preprocess": [273, 282, 286, 291], "prerequisit": [90, 271], "preserv": 288, "price": [273, 274, 286, 287], "princip": 288, "probabl": [274, 287], "problem": [272, 276, 285, 289], "process": [32, 77, 123, 168, 213, 258, 274, 276, 287, 288, 289, 290, 291, 292], "product": 293, "project": [272, 282, 285], "propag": [276, 289, 290], "properti": 291, "propog": 276, "prune": [274, 287, 288], "python": [273, 286, 290], "pytorch": [276, 290], "qualiti": [273, 286], "quartil": [273, 286], "quickli": [25, 70, 116, 161, 206, 251], "quickstart": [284, 294], "quiz": 276, "r": [274, 287], "random": [274, 276, 287], "rang": 289, "rank": [273, 286], "rate": [274, 276, 287, 289], "real": [272, 273, 274, 276, 285, 286, 287, 288, 289], "recal": [274, 287], "recognit": 291, "recommend": 288, "record": [32, 77, 123, 168, 213, 258], "rectifi": [276, 289], "recurr": 289, "reduc": 276, "reduct": [273, 286, 288], "regress": [274, 276, 287], "regular": [274, 287, 289], "relat": [272, 285], "relu": [276, 289], "remov": [273, 286], "represent": 292, "requir": 282, "resolut": 291, "restaur": 276, "result": 288, "retail": 288, "revis": [32, 77, 123, 168, 213, 258], "rgb": 291, "right": [271, 273, 276, 286], "risk": [274, 287], "rmse": [274, 287], "rmsprop": 289, "rnn": [279, 289, 292], "robust": [273, 286], "role": [24, 69, 115, 160, 205, 250], "root": [274, 287], "rule": [274, 276, 287, 288, 289], "run": 276, "r\u00b2": [274, 287], "same": 291, "sampl": [24, 69, 115, 160, 205, 250, 276], "sarah": 276, "save": 290, "scale": [273, 286], "scatter": [273, 286], "scenario": 276, "scene": 282, "schedul": 289, "school": 276, "score": [273, 274, 286, 287, 288], "scree": 288, "search": 276, "second": 276, "section": 276, "segment": [288, 291], "select": [273, 274, 276, 286, 287, 288, 289], "septemb": [31, 76, 122, 167, 212, 257], "sequenc": 292, "sequenti": [274, 276, 279, 287, 290, 292], "seri": [273, 286], "set": [274, 287, 288], "setup": [274, 287, 290], "sgd": [276, 289], "shape": [274, 276, 287, 290], "short": 289, "should": [32, 77, 123, 168, 213, 258], "show": [31, 76, 122, 167, 212, 257], "sigmoid": [276, 289], "signal": 289, "simpl": [273, 274, 276, 286, 287], "singl": 289, "size": [274, 276, 287, 289], "ski": 276, "slice": 290, "slope": [274, 287], "small": 276, "smart": 276, "smoothi": [17, 62, 108, 153, 198, 243], "sne": 288, "social": 288, "softmax": 276, "softwar": [38, 83, 129, 174, 219, 264], "solut": [273, 286, 289], "some": 276, "sourc": [33, 42, 78, 87, 124, 133, 169, 178, 214, 223, 259, 268, 290], "space": 288, "spam": [274, 287], "speed": 276, "sphinx": [38, 83, 129, 174, 219, 264], "split": [274, 276, 287], "squar": [274, 276, 287], "stack": 276, "stage": 276, "standard": [273, 286, 288], "start": 271, "station": 276, "statist": [273, 286], "step": [276, 289], "stocahast": 276, "stochast": 289, "stop": 289, "stori": 276, "strategi": [288, 290], "string": [273, 286], "structur": [42, 87, 90, 133, 178, 223, 268, 271, 273, 274, 282, 286, 287, 289, 292], "student": 276, "studi": 276, "style": 291, "suggest": 282, "summari": [273, 286, 289], "supervis": [272, 274, 285, 287], "support": [90, 288], "system": [274, 276, 287, 288], "t": 288, "take": 276, "tangent": 289, "tanh": 289, "target": [274, 287], "technic": 282, "techniqu": [273, 274, 286, 287, 288, 289, 290, 291, 292, 293], "tensor": [273, 276, 286, 290], "term": [276, 289], "terminologi": [272, 276, 285], "test": [274, 276, 287], "texmath": [31, 76, 122, 167, 212, 257], "text": [273, 286, 292], "thank": [32, 77, 123, 168, 213, 258], "thi": [90, 271, 276], "thing": 271, "three": 276, "threshold": [274, 287], "through": [272, 285], "time": [273, 286], "tip": [90, 273, 274, 276, 286, 287, 288], "todo": [31, 76, 122, 167, 212, 257], "tool": [277, 290], "top": 288, "topologi": 289, "torch": 276, "torchmetr": 276, "train": [274, 276, 282, 287, 289, 290, 291], "transfer": [276, 290, 291], "transform": [273, 282, 286, 293], "translat": [42, 87, 133, 178, 223, 268], "treasur": 276, "tree": [274, 287], "tune": [274, 276, 287, 288, 289], "type": [272, 273, 274, 276, 285, 286, 287, 288, 289, 290, 291, 292, 293], "underfit": [276, 289], "understand": [272, 273, 274, 276, 282, 285, 286, 287, 288, 291, 292, 293], "unit": [276, 289], "unsupervis": [272, 275, 285, 288], "up": 288, "updat": [42, 87, 133, 178, 223, 268, 271, 276, 289], "us": [30, 31, 32, 75, 76, 77, 121, 122, 123, 166, 167, 168, 211, 212, 213, 256, 257, 258, 271, 273, 274, 276, 286, 287, 288], "v": [272, 274, 276, 285, 287, 288], "valid": [274, 276, 287, 289, 290, 291], "valu": [273, 274, 276, 286, 287, 288], "vanish": 289, "varianc": 288, "ve": [272, 285], "verifi": [273, 286], "video": [276, 291], "vision": [282, 291], "visual": [273, 276, 282, 286, 288], "vote": [274, 287], "watch": [273, 286], "we": [272, 276, 285], "weak": [274, 287], "weight": [276, 289], "welcom": [23, 68, 114, 159, 204, 249], "what": [24, 69, 115, 160, 205, 250, 271, 272, 276, 285, 290], "when": [273, 274, 276, 286, 287, 288], "why": [271, 272, 276, 285], "work": [276, 288, 290], "workflow": [42, 87, 133, 178, 223, 268], "world": [272, 273, 274, 276, 285, 286, 287, 288], "wrapper": [273, 286], "write": 276, "xgboost": [274, 287], "yaml": [25, 70, 116, 161, 206, 251], "you": [272, 276, 285], "your": [23, 68, 114, 159, 204, 249, 276], "z": [273, 286], "zero": 276, "zmq": [36, 81, 127, 172, 217, 262]}})