-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslides.qmd
1412 lines (1139 loc) · 37.2 KB
/
slides.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Shiny workshop"
subtitle: "Natural History Museum"
author: "Simon Smart"
format:
revealjs:
logo: images/uol_logo.png
chalkboard: true
code-line-numbers: false
server: shiny
date: "7 February 2024"
preload-iframes: true
---
## About me
```{css}
code.sourceCode {
font-size: 0.8em;
}
.largecode code.sourceCode {
font-size: 1.5em;
}
.mediumcode code.sourceCode {
font-size: 1.1em;
}
p.smalltext {
font-size: 30px !important;
}
table {
font-size: 30px;
}
/*logo*/
.reveal .slide-logo {
height: 100px !important;
max-width: unset !important;
max-height: unset !important;
}
/*Shiny input and outputs*/
.shiny-input-container, .shiny-bound-output, .shiny-input-text {
box-sizing: border-box;
color: rgb(51, 51, 51);
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 22px;
line-height: 25px;
margin-bottom: 15px;
max-width: 100%;
width: 400px
}
/*Datatable*/
table.dataTable {
font-size: 16px;
}
table.dataTable tbody td {
padding: 2px 2px;
}
.dataTables_wrapper, .dataTables_info {
font-size: 16px;
}
/* Shiny error message*/
.shiny-output-error-validation {
color: green;
}
/*mermaid-diagrams*/
/*input, server, output*/
.sin > rect {
fill: #b5e9ec !important;
}
.sser > rect {
fill: #b5ecb6 !important;
}
.sout > rect {
fill: #d6b5ec !important;
}
```
```{r eval=TRUE, echo=FALSE}
library(shiny)
library(dplyr)
library(leaflet)
```
- Background in plant sciences and agricultural science
- Latecomer to R, only started in 2018
- Software developer in Population Health Sciences at University of Leicester with Tim Lucas
- Collaborating with Dave Redding on Disagapp for high-resolution mapping of disease
- <https://github.com/simon-smart88>
## Workshop overview
- Trying to be broad but shallow so you know what's possible, rather than narrow but exhaustive
- Please interrupt: If you're not sure then someone else isn't
- Aiming for 50:50 me talking:you writing
- Code examples are not always complete i.e. not all required arguments are used
- Natalie can help with Shiny, Tim with general R
## Overview for this morning
- Introduction to Shiny
- Reactivity and why writing Shiny code differs from normal R
- Create example apps
## Overview for the afternoon
- User interface design
- Interactive tables and maps
- Deploying your app to the web
- Common problems and debugging
## What is Shiny?
- R package developed by Posit/Rstudio, first released in 2012
- Framework for developing interactive web apps using R
- No need to learn any web development (html, css, javascript)
- If you can do something in R, you can publish it online using Shiny
## Download materials {.largecode}
- `git clone https://github.com/simon-smart88/shinyworkshop`
```{r eval = FALSE, echo = TRUE}
unzip(download.file(url = "t.ly/Y6ZDH",
destfile = "shinyworkshop.zip"))
```
- `install.packages(c("shiny","leaflet", "DT", "rsconnect", "sf", "terra"))`
- For the slides to be interactive, you need to run `slides.qmd`
```{r}
## These are commented out because they will break if 15 people try to load them at once!
## {data-menu-title="Tomvision"}
## {=html}
##<iframe width="100%" height="100%" src="https://tomvision.shinyapps.io/tomvision/"</iframe>
## {data-menu-title="Potato dashboard"}
## {=html}
##<iframe width="100%" height="100%" src="https://web.niab.com/pym-dashboard/?page=sign_in"</iframe>
## {data-menu-title="Shinyscholar"}
## {=html}
##<iframe width="100%" height="100%" src="https://simonsmart.shinyapps.io/shinyscholar/"</iframe>
```
## Structure of a Shiny app {.largecode}
Shiny apps consist of a user interface object (UI) and a server object
```{r eval = FALSE, echo = TRUE}
ui <- fluidPage()
server <- function(input, output) {}
shinyApp(ui = ui, server = server)
```
## Structure of a Shiny app {.largecode}
Shiny apps consist of a user interface object (UI) and a server object
::: columns
::: {.column width="80%"}
```{r eval = FALSE, echo = TRUE}
ui <- fluidPage()
server <- function(input, output) {}
shinyApp(ui, server)
```
:::
::: {.column width="20%"}
- Seeing
- Doing
:::
:::
- Our job is to make these objects talk to each other
## Communication between the UI and server {.smaller}
::: columns
::: {.column width="60%"}
- The server function takes two `list()`-like objects as arguments:
- `input$` where settings made in the UI are stored
- Created for you by objects in the UI
- Values are read-only
- `output$` where objects created in the server that need to be displayed in the UI are stored
- You create them
:::
::: {.column width="40%"}
```{mermaid}
%%| fig-width: 4
%%| fig-height: 5
flowchart TD
A[Input in UI] --> |input$| B([Computation in server])
B --> |output$| C(Output in UI)
class A sin
class B sser
class C sout
```
:::
:::
## Input and output IDs {.largecode}
- The objects in `input$` and `output$` have an ID used to refer to them
- These must be unique or you will get errors
- For `input$` objects, the ID is always the first argument of the function used to create them:
```{r eval = FALSE, echo = TRUE}
textInput("my_first_input")
#allows you to use this in server:
input$my_first_input
```
## Input and output IDs {.largecode}
- For `output$` objects, you declare them and then reference them by ID in the UI:
```{r eval = FALSE, echo = TRUE}
output$my_first_output <- renderText("Hello world")
#allows you to use this in UI:
textOutput("my_first_output")
```
- Both are referenced as strings in the UI but as variables in the server
## Reactivity basics
::: columns
::: {.column width="60%"}
- Code in the server function is *reactive*
- If an `input$` value changes, then any code which uses the input is rerun
- Similarly, any code that uses a value calculated from the input is also rerun
- Unlike in a normal R script, code isn't executed from top to bottom
:::
::: {.column width="40%"}
```{mermaid}
%%| fig-width: 4
%%| fig-height: 5
flowchart TD
A[Input in UI] --> |input$| B([Computation in server])
B --> |output$| C(Output in UI)
class A sin
class B sser
class C sout
```
:::
:::
## A simple example
::: columns
::: {.column width="70%"}
```{r eval = FALSE, echo = TRUE}
ui <- fluidPage(textInput("name", "What is your name?"),
textOutput("name_out"))
server <- function(input, output) {
output$name_out <- renderText(paste0("My name is ", input$name))
}
shinyApp(ui, server)
```
```{r}
br()
textInput("name", "What is your name?")
textOutput("name_out")
```
```{r}
#| context: server
output$name_out <- renderText(paste0("My name is ", input$name))
```
:::
::: {.column width="30%"}
```{mermaid}
%%| fig-width: 3
%%| fig-height: 5
flowchart TD
A["textInput()"] --> |input$name| B(["renderText()"])
B --> |output$name_out| C("textOutput()")
class A sin
class B sser
class C sout
```
:::
:::
## Shiny input widgets
::: columns
::: {.column width="30%"}
```{r eval = FALSE, echo = TRUE}
actionButton()
checkboxInput()
dateInput()
dateRangeInput()
fileInput()
numericInput()
radioButtons()
selectInput()
sliderInput()
textInput()
```
:::
::: {.column width="70%"}
![](images/basic-widgets.png){height="400px"}
:::
:::
Source: <https://shiny.posit.co/r/getstarted/shiny-basics/lesson3/>
```{r}
## {background-iframe="https://gallery.shinyapps.io/081-widgets-gallery/" background-interactive="true"}
```
## Output functions
Outputs are generated in the server using `render*` functions and displayed in the UI using `*Output` functions
| Data type | Render function | Output function |
|-------------------|---------------------|--------------------:|
| Table | `renderTable()` | `tableOutput()` |
| Plot | `renderPlot()` | `plotOutput()` |
| Text | `renderText()` | `textOutput()` |
| Image | `renderImage()` | `imageOutput()` |
| Interactive table | `renderDataTable()` | `dataTableOutput()` |
## Curly bracket syntax
- Typically `render*()` functions are used with curly brackets `{}` inside the function
- This lets you write multiple lines of code, but only the last line is returned
## Another example
```{r eval = FALSE, echo = TRUE}
ui <- fluidPage(selectInput("animal", "Choose your favourite animal",
choices = c("","Whale", "Dinosaur")),
textOutput("animal_name"))
server <- function(input, output) {
output$animal_name <- renderText({
animal_names = list("Whale" = "Hope", "Dinosaur" = "Dippy")
paste0("Your favourite animal's name is ", animal_names[[input$animal]])})
}
shinyApp(ui = ui, server = server)
```
::: columns
::: {.column width="40%"}
```{r}
br()
selectInput("animal", "Choose your favourite animal", choices = c("", "Whale", "Dinosaur"))
```
:::
::: {.column width="40%"}
```{r}
br()
textOutput("animal_name")
htmlOutput("animal_photo")
```
:::
:::
```{r}
#| context: server
output$animal_name <- renderText({
animal_names = list("Whale" = "Hope", "Dinosaur" = "Dippy")
paste0("Your favourite animal's name is ", animal_names[[input$animal]])
})
output$animal_photo <- renderUI({
req(input$animal)
url <- switch(input$animal,
Dinosaur = "https://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Diplodocus_%28replica%29.001_-_London.JPG/1280px-Diplodocus_%28replica%29.001_-_London.JPG",
Whale = "https://upload.wikimedia.org/wikipedia/commons/thumb/5/54/Blue_Whale_-_Natural_History_Museum%2C_London_-_Joy_of_Museums.jpg/1280px-Blue_Whale_-_Natural_History_Museum%2C_London_-_Joy_of_Museums.jpg")
credit <- switch(input$animal,
Dinosaur = '<a href="https://commons.wikimedia.org/wiki/User:Drow_male" style="font-size:10px;">Fernando Losada Rodríguez</a>',
Whale = '<a href="https://commons.wikimedia.org/wiki/User:Joyofmuseums" style="font-size:10px;">Joyofmuseums</a>')
HTML(glue::glue('<img src="{url}" height="180px">{credit}'))
})
```
## UI development {.largecode}
::: columns
::: {.column width="50%"}
- The UI object is one long list
- `fluidPage()` makes the design *responsive* so that it fits on different sized screens
- The first item will be placed in the top left
- Functions need separating by commas
:::
::: {.column width="50%"}
\
```{r echo=TRUE, eval=FALSE}
ui <- fluidPage(
actionButton(),
checkboxInput(),
dateInput(),
textOutput(),
plotOutput(),
tableOutput()
)
```
:::
:::
## Server development
- Shiny code is more complex to debug and errors may not be simple to understand
- Some mistakes won't produce any errors at all
- First write code in an .Rmd file and then refactor for reactivity
- Start simple and build complexity gradually
- If you don't already, use the F1 key to look at documentation
## Static code can be put in different places
```{r eval = FALSE, echo = TRUE}
df <- read.csv()
ui <- fluidPage()
server <- function(input, output) {
df <- read.csv()
output$table <- renderTable({
df <- read.csv()
})
}
shinyApp(ui = ui, server = server)
```
## Static code can be put in different places
```{r eval = FALSE, echo = TRUE}
df <- read.csv()
# run once when the app starts
ui <- fluidPage()
server <- function(input, output) {
df <- read.csv()
# run whenever a new user uses the app
output$table <- renderTable({
df <- read.csv()
# run whenever input$value changes
df <- df[df$column == input$value,]
})
}
shinyApp(ui = ui, server = server)
```
## tidyverse peculiarities
Unfortunately this will not work as you might expect:
```{r echo=TRUE, eval=FALSE}
#UI
selectInput("var", "Variable", choices =
c("carat", "depth", "table", "price", "x", "y", "z"))
numericInput("min", "Minimum", value = 1)
#Server
output$table <- renderTable(diamonds %>% filter(input$var > input$min))
```
## tidyverse peculiarities
- This is the correct syntax:
```{r echo=TRUE, eval=FALSE}
output$table <- renderTable(diamonds %>% filter(.data[[input$var]] > .env$input$min))
```
- See [Mastering Shiny](https://mastering-shiny.org/action-tidy.html) for more details
- For now, just use the old-fashioned method:
```{r echo=TRUE, eval=FALSE}
output$table <- renderTable(diamonds[diamonds[[input$var]] > input$min,])
```
## Exercise 1
- Create an app where you:
- Load data from `iris`
- Filter the data in some way using `sliderInput()`, `numericInput()` or `selectInput()`
- Display the filtered data using `renderTable()` and `tableOutput()`
- Rstudio automatically detects `shinyApp()` in a file and clicking on ![](images/run_app.png) will run the app
## `reactive()`
- If you want to access an `input$` you must do so inside reactive objects
- You have already done this - all the `render*` functions are reactive
- If you want to create an object without making an output though, you need to wrap it inside `reactive()`
- The resultant object is a function, so you need to append `()` when you access the values
## `reactive()` example {.largecode}
❌
```{r echo=TRUE, eval=FALSE}
df <- iris[iris$Species == input$species,]
min_petal_length <- min(df$Petal.Length)
```
✅
```{r echo=TRUE, eval=FALSE}
df <- reactive(iris[iris$Species == input$species,])
min_petal_length <- min(df()$Petal.Length)
```
- Just like the `render*` functions, you can make these multi-line using `{}`
## File uploads {.largecode}
- `fileInput()` uploads the file to the web server, but not into the R environment
- The resulting `input$` value is a dataframe containing `name`, `size`, `type` and `datapath` columns
- To access the data, you need to process the file using the `datapath` column e.g.:
```{r echo=TRUE, eval=FALSE}
fileInput("file", "Upload file")
df <- reactive(read.csv(input$file$datapath))
```
## `renderUI()` and `uiOutput()`
- Used to generate UI elements containing values reliant on other inputs
```{r echo=TRUE, eval=FALSE}
#UI:
numericInput("max_value", "Max value", value = 10)
uiOutput("my_widget")
textOutput("slider_value")
#Server:
output$my_widget <- renderUI({
sliderInput("slider", "Value", value = 5, min = 1, max = input$max_value)
})
output$slider_value <- renderText(input$slider)
```
::: columns
::: {.column width="50%"}
```{r}
br()
numericInput("max_value", "Max value", value = 10)
```
:::
::: {.column width="50%"}
```{r}
br()
uiOutput("my_widget")
textOutput("slider_value")
```
:::
:::
```{r}
#| context: server
output$my_widget <- renderUI({sliderInput("slider", "Value", value = 5, min = 1, max = input$max_value)})
output$slider_value <- renderText(input$slider)
```
## `observe()`
- Similar to `reactive()` but doesn't return a result
```{r echo=TRUE, eval=FALSE}
numericInput("max_value", "Max value", value = 10)
sliderInput("slider", "Value", value = 5, min = 1, 10)
textOutput("slider_value")
#Server:
observe({
updateSliderInput(
inputId = "slider",
max = input$max_value
)
})
```
::: columns
::: {.column width="50%"}
```{r}
br()
numericInput("max_value2", "Max value", value = 10)
```
:::
::: {.column width="50%"}
```{r}
br()
sliderInput("slider2", "Value", value = 5, min = 1, 10)
textOutput("slider_value2")
```
:::
:::
```{r}
#| context: server
observe({
updateSliderInput(
inputId = "slider2",
max = input$max_value2
)
})
output$slider_value2 <- renderText(input$slider2)
```
## Controlling reactivity
- Reactivity is essential for creating an interactive application but requires managing:
- What if some of your functions take seconds or minutes to run?
- What if your function uses an `input$` which is `NULL` when the app initiates?
## Using `req()`
- `req()` is used to control execution of a function by defining the values that it *requires*
- Placed at the top of reactive functions i.e. `reactive()` and `render*()`
- If the conditions are not met, execution is halted
```{r echo=TRUE, eval=FALSE}
req(input$name) #checks that the input is not NULL
req(input$name == "Simon") #checks a specific condition
req(input$name == "Simon", input$check == TRUE) #checks both conditions
```
::: columns
::: {.column width="30%"}
```{r}
br()
textInput("name1", "What is your name?")
checkboxInput("check1", "Tick me!", value = FALSE)
```
:::
::: {.column width="50%"}
```{r}
br()
textOutput("name_out1a")
textOutput("name_out1b")
textOutput("name_out1c")
```
:::
:::
```{r}
#| context: server
output$name_out1a <- renderText({
req(input$name1)
"The first condition is satisfied"})
output$name_out1b <- renderText({
req(input$name1)
req(input$name1 == "Simon")
"The first and second conditions are satisfied"})
output$name_out1c <- renderText({
req(input$name1)
req(input$name1 == "Simon")
req(input$name1 == "Simon", input$check1 == TRUE)
"All three conditions are satisfied"})
```
## Using `validate()` and `need()`
- `validate(need())` is similar to `req()` but more user-friendly as errors can be passed back to the UI
```{r echo = TRUE, eval = FALSE}
validate(need(input$name, "Please enter your name"))
validate(need(input$name == "Simon", "Your name must be Simon"))
validate(need(input$name == "Simon", "Your name must be Simon"),
need(input$check == TRUE, "The checkbox must be ticked"))
```
```{r}
br()
textInput("name2", "What is your name?")
checkboxInput("check", "Tick me!", value = FALSE)
textOutput("name_out2")
```
```{r}
#| context: server
output$name_out2 <- renderText({
validate(need(input$name2, "Please enter your name"))
validate(need(input$name2 == "Simon", "Your name must be Simon"))
validate(need(input$name2 == "Simon", "Your name must be Simon"),
need(input$check == TRUE, "The checkbox must be ticked"))
paste0("My name is ",input$name2)})
```
## Using `actionButton()` and `bindEvent()` {.largecode}
- Used to explicitly control when code is executed
```{r echo = TRUE, eval = FALSE}
actionButton("go", "Do stuff") #UI
output$name_out <- renderText(input$name) %>% #Server
bindEvent(input$go)
```
```{r}
br()
textInput("name3", "What is your name?")
actionButton("go", "Do stuff")
textOutput("name_out3")
textOutput("action_value")
```
```{r}
#| context: server
library(dplyr)
output$name_out3 <- renderText({paste0("My name is ",input$name3)}) %>% bindEvent(input$go)
output$action_value <- renderText({
req(input$go > 1)
paste0("actionButton value = ", input$go)})
```
## Using `actionButton()` and `observeEvent()` {.largecode}
- Similar to using `bindEvent()` but for use when the action doesn't produce an output
```{r echo = TRUE, eval = FALSE}
actionButton("go", "Go!") #UI
observeEvent(input$go, {do_stuff()}) #Server
```
```{r}
br()
numericInput("number", "Number to send", value = 10)
actionButton("go_db", "Send to database")
textOutput("database")
```
```{r}
#| context: server
database_value <- reactiveVal(value = 1)
observeEvent(input$go_db, {database_value(input$number)})
output$database <- renderText({
paste0("The database value is: ", database_value())})
```
## Exercise 2 {.smaller}
::: columns
::: {.column width="50%"}
Create an app where you:
- Upload `iris.csv` using `fileInput()`
- Select the names of two columns - `renderUI()` and `selectInput()`
- Plot the two columns in a scatter plot - `renderPlot()`
- Optional extra:
- Use `actionButton` and `bindEvent()` to control when the plot is rendered
:::
::: {.column width="50%"}
```{mermaid}
flowchart TD
A["fileInput('file' ...)"] --> |input$file| B(["renderUI({<br/>selectInput(<br/>'variable_two' ...)<br/>})"])
A --> |input$file| C(["renderUI({<br/>selectInput(<br/>'variable_one' ...)<br/>})"])
B --> |output$select_two| D("uiOutput('select_two')")
C --> |output$select_one| E("uiOutput('select_one')")
E --> |input$variable_one|F
D --> |input$variable_two|F(["renderPlot()"])
F --> |output$plot|G("plotOutput('plot')")
class A sin
class B sser
class C sser
class D sout
class E sout
class F sser
class G sout
```
:::
:::
## Downloads
- `downloadButton()` in the UI
- `downloadHandler()` in the server
```{r echo=TRUE, eval=FALSE}
downloadButton("download_data")
output$download_data <- downloadHandler(
filename = function() {
paste("data.csv", sep="")
},
content = function(file) {
write.csv(data, file)
}
)
```
## Downloads
- Typically, you want to reuse a `reactive()` that you have used to create a table or a graph inside the `content` part of the download handler
```{r echo = TRUE, eval=FALSE}
df <- reactive(iris[iris$Sepal.Length <= input$sepal_length,])
output$plot <- renderPlot(plot(df()$Sepal.Length, df()$Sepal.Width))
output$download_data <- downloadHandler(
filename = function() {
"your_plot.png")
},
content = function(file) {
png(file, width = 1000, height = 500)
plot(df()$Sepal.Length, df()$Sepal.Width)
dev.off()
}
)
```
## Interactive tables
- Datatables are created with `DT::renderDataTable()` in the server and `DT::dataTableOutput()` in the UI:
- For even fancier tables, check out `{reactable}` and `{gt}`
```{r echo = TRUE, eval=FALSE}
DT::dataTableOutput("datatable")
output$datatable <- DT::renderDataTable(iris)
```
```{r}
DT::dataTableOutput("datatable")
```
```{r}
#| context: server
output$datatable <- DT::renderDataTable(iris, options = list(pageLength = 5))
```
## Interactive tables
- You can access the selected row(s) using `input$<table ID>_rows_selected`
```{r}
DT::dataTableOutput("datatable2")
textOutput("selected_row")
```
```{r}
#| context: server
output$datatable2 <- DT::renderDataTable(iris, options = list(pageLength = 5))
output$selected_row <- renderText({glue::glue("You have selected rows: {paste(input$datatable2_rows_selected, collapse = ' ')}")})
```
## Interactive maps
- `{leaflet}` is a package for creating interactive maps
- `renderLeaflet()` for the server and `leafletOutput()` for the UI
```{r echo=TRUE, eval=FALSE}
output$map <- renderLeaflet({
leaflet() %>%
addProviderTiles("Esri.WorldTopoMap") %>%
addPolygons(data = sf_object) %>%
addRasterImage(raster_image) %>%
terra::plet(terra_object) #currently requires dev version:
#remotes::install_github("rstudio/leaflet")
})
```
## An example
```{r}
leafletOutput("map")
```
```{r}
#| context: server
fcover <- terra::rast("exercise3/London_fcover_2023-06-10.tif")
wards <- sf::st_read("exercise3/London_Ward.shp", quiet = TRUE)
#reproject shapes to same CRS as the raster
wards <- sf::st_transform(wards, terra::crs(fcover))
output$map <- leaflet::renderLeaflet({
leaflet::leaflet() %>%
leaflet::addProviderTiles("Esri.WorldTopoMap") %>%
leaflet::addRasterImage(fcover) %>%
leaflet::addPolygons(data = wards, color = "black", weight = 1)
})
```
## More leaflet
- Functions for:
- background maps - `addProviderTiles()`
- legends - `addLegend()`
- symbols - `addMarkers()`
- pop-ups - `addPopups()`
- zooming - `setView()` and `fitBounds()`
- controlling visible layers- `addLayersControl()`
- `{leaflet.extras}` has tools for drawing shapes on the map which can be used to edit data
## Leaflet proxy
- `leafletProxy()` prevents completely re-drawing the map whenever something changes:
```{r echo=TRUE, eval=FALSE}
output$map <- renderLeaflet({
leaflet() %>%
addPolygons(data = sf_object)
})
proxy_map <- leafletProxy("map")
observe({
proxy_map %>%
addRasterImage(
terra::clamp(
fcover, input$threshold, value = FALSE))
})
```
## Without leafletproxy
```{r}
leafletOutput("map2")
numericInput("thresh1", "Threshold", value = 0)
```
```{r}
#| context: server
pal <- leaflet::colorBin("Greens", domain = c(0:100), na.color = "#00000000")
output$map2 <- leaflet::renderLeaflet({
leaflet::leaflet() %>%
leaflet::addProviderTiles("Esri.WorldImagery") %>%
leaflet::addRasterImage(terra::clamp(fcover, input$thresh1, value=FALSE), colors = pal, opacity = 0.7) %>%
leaflet::addPolygons(data = wards, color = "black", weight = 1) %>%
leaflet::addLegend(position = "bottomright", pal = pal, values = terra::values(fcover), title = "FCover")
})
```
## With leafletproxy
```{r}
leafletOutput("map3")
numericInput("thresh2", "Threshold", value = 0)
```
```{r}
#| context: server
output$map3 <- leaflet::renderLeaflet({
leaflet::leaflet() %>%
leaflet::addProviderTiles("Esri.WorldImagery") %>%
leaflet::addPolygons(data = wards, color = "black", weight = 1) %>%
leaflet::addLegend(position = "bottomright", pal = pal, values = terra::values(fcover), title = "FCover")
})
proxy_map <- leaflet::leafletProxy("map3")
observe({
req(!is.na(input$thresh2))
proxy_map %>%
leaflet::addRasterImage(terra::clamp(fcover, input$thresh2 , value = FALSE), colors = pal, opacity = 0.7)
})
```
## Accessing information from the map {.smaller}
- There are `input$` values that record events occurring in the map
- `input$<map ID>_<object type>_<event type>` e.g. `input$map_shape_click`
- The values are a `list()` containing `$lat` and `$lng` which can be used for further calculations
- See the Inputs/Events section of <https://rstudio.github.io/leaflet/shiny.html>
```{r echo=TRUE, eval=FALSE}
output$selected_shape <- renderText({
selected_point <- data.frame(x = input$map_shape_click$lng, y = input$map_shape_click$lat ) %>%
sf::st_as_sf(coords = c("x", "y"), crs = 4326)
index_of_polygon <- sf::st_intersects(selected_point, wards, sparse = T) %>%
as.numeric()