-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathver001e.py
342 lines (190 loc) · 6.33 KB
/
ver001e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from nltk.corpus import stopwords
from nltk.util import ngrams
from sklearn.feature_extraction.text import CountVectorizer
from collections import defaultdict
from collections import Counter
plt.style.use('ggplot')
stop=set(stopwords.words('english'))
import re
from nltk.tokenize import word_tokenize
import gensim
import string
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from tqdm import tqdm
from keras.models import Sequential
from keras.layers import Embedding,LSTM,Dense,SpatialDropout1D
from keras.initializers import Constant
from sklearn.model_selection import train_test_split
from keras.optimizers import Adam
# In[3]:
import os
#os.listdir('C:\Users\Predator\Desktop\Pyton ile Makine Öğrenmesi\glove.840B.300d.pkl')
# In[2]:
tweet= pd.read_csv('train.csv')
test=pd.read_csv('test.csv')
tweet.head(3)
# In[3]:
df=pd.concat([tweet,test])
# In[4]:
df.head()
# In[5]:
def remove_URL(text):
url = re.compile(r'https?://\S+|www\.\S+')
return url.sub(r'',text)
# In[6]:
df['text']=df['text'].apply(lambda x : remove_URL(x))
# In[7]:
def remove_html(text):
html=re.compile(r'<.*?>')
return html.sub(r'',text)
# In[8]:
df['text']=df['text'].apply(lambda x : remove_html(x))
# In[9]:
def remove_emoji(text):
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
"]+", flags=re.UNICODE)
return emoji_pattern.sub(r'', text)
# In[10]:
df['text']=df['text'].apply(lambda x: remove_emoji(x))
# In[11]:
def remove_punct(text):
table=str.maketrans('','',string.punctuation)
return text.translate(table)
# In[12]:
df['text']=df['text'].apply(lambda x : remove_punct(x))
# In[19]:
from spellchecker import SpellChecker
spell = SpellChecker()
def correct_spellings(text):
corrected_text = []
misspelled_words = spell.unknown(text.split())
for word in text.split():
if word in misspelled_words:
corrected_text.append(spell.correction(word))
else:
corrected_text.append(word)
return " ".join(corrected_text)
text = "corect me plese"
correct_spellings(text)
# In[13]:
import nltk
nltk.download('punkt')
# In[14]:
def create_corpus(df):
corpus=[]
for tweet in tqdm(df['text']):
words=[word.lower() for word in word_tokenize(tweet) if((word.isalpha()==1) & (word not in stop))]
corpus.append(words)
return corpus
# elimizdeki df verisi satır satır ve kelime kelime ayrıldı.
# In[15]:
corpus=create_corpus(df)
# In[16]:
print(corpus)
# In[18]:
# In[22]:
embedding_dict={}
with open('C:\\Users\\Predator\\Desktop\\Pyton ile Makine Öğrenmesi\\glove.6B.100d.txt','r',encoding="utf8") as f:
for line in f:
values=line.split()
word=values[0]
vectors=np.asarray(values[1:],'float32')
embedding_dict[word]=vectors
f.close()
# In[24]:
MAX_LEN=50
tokenizer_obj=Tokenizer()
tokenizer_obj.fit_on_texts(corpus)
sequences=tokenizer_obj.texts_to_sequences(corpus)
tweet_pad=pad_sequences(sequences,maxlen=MAX_LEN,truncating='post',padding='post')
# In[50]:
tweet_pad
# In[35]:
word_index=tokenizer_obj.word_index
print('Number of unique words:',len(word_index))
# In[38]:
print(len(word_index))
# In[36]:
num_words=len(word_index)+1
embedding_matrix=np.zeros((num_words,100))
for word,i in tqdm(word_index.items()):
if i > num_words:
continue
emb_vec=embedding_dict.get(word)
if emb_vec is not None:
embedding_matrix[i]=emb_vec
# In[45]:
np.shape(embedding_matrix)
# In[47]:
model=Sequential()
embedding=Embedding(num_words,100,embeddings_initializer=Constant(embedding_matrix),
input_length=MAX_LEN,trainable=False)
model.add(embedding)
model.add(SpatialDropout1D(0.2))
model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
optimzer=Adam(learning_rate=1e-5)
model.compile(loss='binary_crossentropy',optimizer=optimzer,metrics=['accuracy'])
# In[51]:
train=tweet_pad[:tweet.shape[0]]
test=tweet_pad[tweet.shape[0]:]
# In[52]:
X_train,X_test,y_train,y_test=train_test_split(train,tweet['target'].values,test_size=0.15)
print('Shape of train',X_train.shape)
print("Shape of Validation ",X_test.shape)
# In[53]:
history=model.fit(X_train,y_train,batch_size=4,epochs=15,validation_data=(X_test,y_test),verbose=2)
# In[55]:
predictions = model.predict_classes(X_test)
# In[58]:
from sklearn.metrics import classification_report,confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.pyplot as plt
def plot_cm(y_true, y_pred, title, figsize=(5,4)):
cm = confusion_matrix(y_true, y_pred, labels=np.unique(y_true))
cm_sum = np.sum(cm, axis=1, keepdims=True)
cm_perc = cm / cm_sum.astype(float) * 100
annot = np.empty_like(cm).astype(str)
nrows, ncols = cm.shape
for i in range(nrows):
for j in range(ncols):
c = cm[i, j]
p = cm_perc[i, j]
if i == j:
s = cm_sum[i]
annot[i, j] = '%.1f%%\n%d/%d' % (p, c, s)
elif c == 0:
annot[i, j] = ''
else:
annot[i, j] = '%.1f%%\n%d' % (p, c)
cm = pd.DataFrame(cm, index=np.unique(y_true), columns=np.unique(y_true))
cm.index.name = 'Actual'
cm.columns.name = 'Predicted'
fig, ax = plt.subplots(figsize=figsize)
plt.title(title)
sns.heatmap(cm, cmap= "YlGnBu", annot=annot, fmt='', ax=ax)
# In[60]:
plot_cm(y_test,predictions, 'Confution matrix of Tweets', figsize=(5,5))
# In[62]:
submission=pd.read_csv('sample_submission.csv')
y_pre=model.predict(test)
y_pre=np.round(y_pre).astype(int).reshape(3263)
sub=pd.DataFrame({'id':submission['id'].values.tolist(),'target':y_pre})
sub.to_csv('submission.csv',index=False)
# In[ ]:
y_pre1=model.predict(X_test)