-
Notifications
You must be signed in to change notification settings - Fork 170
/
Copy pathrun.py
224 lines (171 loc) · 10.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python
import getopt
import math
import numpy
import PIL
import PIL.Image
import sys
import torch
import sepconv # the custom separable convolution layer
##########################################################
torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance
torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance
##########################################################
args_strModel = 'lf'
args_strPadding = 'improved'
args_strOne = './images/one.png'
args_strTwo = './images/two.png'
args_strVideo = './videos/car-turn.mp4'
args_strOut = './out.png'
for strOption, strArg in getopt.getopt(sys.argv[1:], '', [
'model=',
'padding=',
'one=',
'two=',
'vidoe=',
'out=',
])[0]:
if strOption == '--model' and strArg != '': args_strModel = strArg # which model to use, l1 or lf, please see our paper for more details
if strOption == '--padding' and strArg != '': args_strPadding = strArg # which padding to use, the one used in the paper or the improved one
if strOption == '--one' and strArg != '': args_strOne = strArg # path to the first frame
if strOption == '--two' and strArg != '': args_strTwo = strArg # path to the second frame
if strOption == '--video' and strArg != '': args_strVideo = strArg # path to a video
if strOption == '--out' and strArg != '': args_strOut = strArg # path to where the output should be stored
# end
##########################################################
class Network(torch.nn.Module):
def __init__(self):
super().__init__()
def Basic(intInput, intOutput):
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels=intInput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
# end
def Upsample(intInput, intOutput):
return torch.nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
torch.nn.Conv2d(in_channels=intOutput, out_channels=intOutput, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False)
)
# end
def Subnet():
return torch.nn.Sequential(
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Conv2d(in_channels=64, out_channels=51, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=False),
torch.nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
torch.nn.Conv2d(in_channels=51, out_channels=51, kernel_size=3, stride=1, padding=1)
)
# end
self.netConv1 = Basic(6, 32)
self.netConv2 = Basic(32, 64)
self.netConv3 = Basic(64, 128)
self.netConv4 = Basic(128, 256)
self.netConv5 = Basic(256, 512)
self.netDeconv5 = Basic(512, 512)
self.netDeconv4 = Basic(512, 256)
self.netDeconv3 = Basic(256, 128)
self.netDeconv2 = Basic(128, 64)
self.netUpsample5 = Upsample(512, 512)
self.netUpsample4 = Upsample(256, 256)
self.netUpsample3 = Upsample(128, 128)
self.netUpsample2 = Upsample(64, 64)
self.netVertical1 = Subnet()
self.netVertical2 = Subnet()
self.netHorizontal1 = Subnet()
self.netHorizontal2 = Subnet()
self.load_state_dict({ strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.hub.load_state_dict_from_url(url='http://content.sniklaus.com/sepconv/network-' + args_strModel + '.pytorch', file_name='sepconv-' + args_strModel).items() })
# end
def forward(self, tenOne, tenTwo):
tenConv1 = self.netConv1(torch.cat([tenOne, tenTwo], 1))
tenConv2 = self.netConv2(torch.nn.functional.avg_pool2d(input=tenConv1, kernel_size=2, stride=2, count_include_pad=False))
tenConv3 = self.netConv3(torch.nn.functional.avg_pool2d(input=tenConv2, kernel_size=2, stride=2, count_include_pad=False))
tenConv4 = self.netConv4(torch.nn.functional.avg_pool2d(input=tenConv3, kernel_size=2, stride=2, count_include_pad=False))
tenConv5 = self.netConv5(torch.nn.functional.avg_pool2d(input=tenConv4, kernel_size=2, stride=2, count_include_pad=False))
tenDeconv5 = self.netUpsample5(self.netDeconv5(torch.nn.functional.avg_pool2d(input=tenConv5, kernel_size=2, stride=2, count_include_pad=False)))
tenDeconv4 = self.netUpsample4(self.netDeconv4(tenDeconv5 + tenConv5))
tenDeconv3 = self.netUpsample3(self.netDeconv3(tenDeconv4 + tenConv4))
tenDeconv2 = self.netUpsample2(self.netDeconv2(tenDeconv3 + tenConv3))
tenCombine = tenDeconv2 + tenConv2
tenVerone = self.netVertical1(tenCombine)
tenVertwo = self.netVertical2(tenCombine)
tenHorone = self.netHorizontal1(tenCombine)
tenHortwo = self.netHorizontal2(tenCombine)
return sum([
sepconv.sepconv_func.apply(torch.nn.functional.pad(input=tenOne, pad=[int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0))], mode='replicate'), tenVerone, tenHorone),
sepconv.sepconv_func.apply(torch.nn.functional.pad(input=tenTwo, pad=[int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0))], mode='replicate'), tenVertwo, tenHortwo)
])
# end
# end
netNetwork = None
##########################################################
def estimate(tenOne, tenTwo):
global netNetwork
if netNetwork is None:
netNetwork = Network().cuda().train(False)
# end
assert(tenOne.shape[1] == tenTwo.shape[1])
assert(tenOne.shape[2] == tenTwo.shape[2])
intWidth = tenOne.shape[2]
intHeight = tenOne.shape[1]
assert(intWidth <= 1280) # while our approach works with larger images, we do not recommend it unless you are aware of the implications
assert(intHeight <= 720) # while our approach works with larger images, we do not recommend it unless you are aware of the implications
tenPreprocessedOne = tenOne.cuda().view(1, 3, intHeight, intWidth)
tenPreprocessedTwo = tenTwo.cuda().view(1, 3, intHeight, intWidth)
if args_strPadding == 'paper':
intPaddingLeft, intPaddingTop, intPaddingBottom, intPaddingRight = int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)), int(math.floor(51 / 2.0)) ,int(math.floor(51 / 2.0))
elif args_strPadding == 'improved':
intPaddingLeft, intPaddingTop, intPaddingBottom, intPaddingRight = 0, 0, 0, 0
# end
intPreprocessedWidth = intPaddingLeft + intWidth + intPaddingRight
intPreprocessedHeight = intPaddingTop + intHeight + intPaddingBottom
if intPreprocessedWidth != ((intPreprocessedWidth >> 7) << 7):
intPreprocessedWidth = (((intPreprocessedWidth >> 7) + 1) << 7) # more than necessary
# end
if intPreprocessedHeight != ((intPreprocessedHeight >> 7) << 7):
intPreprocessedHeight = (((intPreprocessedHeight >> 7) + 1) << 7) # more than necessary
# end
intPaddingRight = intPreprocessedWidth - intWidth - intPaddingLeft
intPaddingBottom = intPreprocessedHeight - intHeight - intPaddingTop
tenPreprocessedOne = torch.nn.functional.pad(input=tenPreprocessedOne, pad=[intPaddingLeft, intPaddingRight, intPaddingTop, intPaddingBottom], mode='replicate')
tenPreprocessedTwo = torch.nn.functional.pad(input=tenPreprocessedTwo, pad=[intPaddingLeft, intPaddingRight, intPaddingTop, intPaddingBottom], mode='replicate')
return torch.nn.functional.pad(input=netNetwork(tenPreprocessedOne, tenPreprocessedTwo), pad=[0 - intPaddingLeft, 0 - intPaddingRight, 0 - intPaddingTop, 0 - intPaddingBottom], mode='replicate')[0, :, :, :].cpu()
# end
##########################################################
if __name__ == '__main__':
if args_strOut.split('.')[-1] in ['bmp', 'jpg', 'jpeg', 'png']:
tenOne = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(args_strOne))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0)))
tenTwo = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(args_strTwo))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0)))
tenOutput = estimate(tenOne, tenTwo)
PIL.Image.fromarray((tenOutput.clip(0.0, 1.0).numpy(force=True).transpose(1, 2, 0)[:, :, ::-1] * 255.0).astype(numpy.uint8)).save(args_strOut)
elif args_strOut.split('.')[-1] in ['avi', 'mp4', 'webm', 'wmv']:
import moviepy
objVideoreader = moviepy.VideoFileClip(filename=args_strVideo)
intWidth = objVideoreader.w
intHeight = objVideoreader.h
tenFrames = [None, None, None, None, None]
with moviepy.video.io.ffmpeg_writer.FFMPEG_VideoWriter(filename=args_strOut, size=(intWidth, intHeight), fps=objVideoreader.fps) as objVideowriter:
for npyFrame in objVideoreader.iter_frames():
tenFrames[4] = torch.FloatTensor(numpy.ascontiguousarray(npyFrame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0)))
if tenFrames[0] is not None:
tenFrames[2] = estimate(tenFrames[0], tenFrames[4])
tenFrames[1] = estimate(tenFrames[0], tenFrames[2])
tenFrames[3] = estimate(tenFrames[2], tenFrames[4])
objVideowriter.write_frame((tenFrames[0].clip(0.0, 1.0).numpy(force=True).transpose(1, 2, 0)[:, :, ::-1] * 255.0).astype(numpy.uint8))
objVideowriter.write_frame((tenFrames[1].clip(0.0, 1.0).numpy(force=True).transpose(1, 2, 0)[:, :, ::-1] * 255.0).astype(numpy.uint8))
objVideowriter.write_frame((tenFrames[2].clip(0.0, 1.0).numpy(force=True).transpose(1, 2, 0)[:, :, ::-1] * 255.0).astype(numpy.uint8))
objVideowriter.write_frame((tenFrames[3].clip(0.0, 1.0).numpy(force=True).transpose(1, 2, 0)[:, :, ::-1] * 255.0).astype(numpy.uint8))
# end
tenFrames[0] = torch.FloatTensor(numpy.ascontiguousarray(npyFrame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0)))
# end
# end
# end
# end