-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun.py
575 lines (483 loc) · 25.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# -*- coding : utf-8 -*-
# @FileName : run.py
# @Author : Ruixiang JIANG (Songrise)
# @Time : Aug 13, 2023
# @Github : https://github.com/songrise
# @Description: script to train and test CLIP-Count
#supress torchvision warnings
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
import argparse
import numpy as np
import os
import random
from pathlib import Path
import math
from PIL import Image
from models.contrastive_loss import ContrastiveLoss
import torch
import torch.nn.functional as F
from typing import List, Dict, Any
import util.misc as misc
from util.FSC147 import FSC147
from util.CARPK import CARPK
from util.ShanghaiTech import ShanghaiTech
import util
from models import clip_count
import pytorch_lightning as pl
from pytorch_lightning import LightningModule, Trainer, seed_everything
import einops
import cv2
import gradio as gr
import torchvision.transforms.functional as TF
from util.constant import SCALE_FACTOR
os.environ["CUDA_LAUNCH_BLOCKING"] = '1'
def get_args_parser():
parser = argparse.ArgumentParser('CLIP-Count', add_help=False)
parser.add_argument("--mode",type = str, default = "train", choices = ["train", "test", "app"], help = "train or test or an interactive application")
parser.add_argument("--exp_name",type = str, default = "exp", help = "experiment name")
parser.add_argument('--batch_size', default=32, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--backbone', default="b16", choices=["b16", "b32", "l14"],
type=str, help = "backbone of clip")
parser.add_argument('--decoder_depth', default=4, type=int, help='Number of FIM layers')
parser.add_argument('--decoder_head', default=8, type=int, help='Number of attention heads for FIM')
parser.add_argument('--use_mixed_fim', default=True, type = misc.str2bool, help = "whether to use hierarchical patch-text interaction")
parser.add_argument('--unfreeze_vit', default=False, type = misc.str2bool, help = "whether to unfreeze CLIP vit i.e., finetune CLIP")
parser.add_argument('--use_fim', default=False, type = misc.str2bool, help = "whether to use naive interaction")
#contrastive loss related
parser.add_argument('--use_coop', default=True, type = misc.str2bool,
help='whether to perform context learning for text prompts.')
parser.add_argument('--coop_width', default = 2, type = int, help = "width of context (how many token to be learned)")
parser.add_argument('--coop_require_grad', default = False, type = misc.str2bool, help = "whether to require grad for context learning")
parser.add_argument('--use_vpt', default=True, type = misc.str2bool,
help='whether to perform visual prompt learning.')
parser.add_argument('--vpt_width', default = 20, type = int, help = "width of visual prompt (how many token each layer)")
parser.add_argument('--vpt_depth', default = 10, type = int, help = "depth of visual prompt (how many layer)")
parser.add_argument("--use_contrast", default=True, type = misc.str2bool, help = "whether to use contrasitive loss")
parser.add_argument("--w_contrast", default = 1.0, type = float, help = "weight of contrastive loss")
parser.add_argument("--noise_text_ratio", default = 0.0, type = float, help = "ratio of noise text")
parser.add_argument('--normalize_contrast',default=False, type = misc.str2bool, help = "whether to normalize contrastive loss")
parser.add_argument('--contrast_pos', default = "pre", choices = ["pre", "post"], type = str, help = "Use contrastive loss before or after the interaction")
parser.add_argument('--contrast_pre_epoch', default = 20, type = int, help = "how many epoch to use contrastive pretraining")
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
# Dataset parameters
parser.add_argument('--data_path', default='./data/', type=str,
help='dataset path')
parser.add_argument('--dataset_type', default="FSC", type = str, choices=["FSC","CARPK", "COCO", "ShanghaiTech"])
parser.add_argument('--output_dir', default='./out',
help='path where to save, empty for no saving')
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--ckpt', default=None, type = str,
help='path of resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=12, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# log related
parser.add_argument('--log_dir', default='./out',
help='path where to tensorboard log')
parser.add_argument('--log_test_img', default=False, type=bool, help="whehter to log overlaied density map when validation and testing.")
parser.add_argument('--dont_log', action='store_true', help='do not log to tensorboard')
parser.add_argument('--val_freq', default=1, type=int, help='check validation every val_freq epochs')
#log setup
parser.add_argument('--exp_note', default = "", type = str, help = "experiment note")
return parser
class Model(LightningModule):
def __init__(self, args, all_classes:List[str] = None):
super().__init__()
self.args = args
# if args is a dictionary, convert to Namespace
if self.args is not None and type(self.args) is dict:
self.args = argparse.Namespace(**self.args)
self.all_classes = all_classes
self.save_hyperparameters(args)
self.model = clip_count.CLIPCount(
fim_depth=self.args.decoder_depth,
fim_num_heads=self.args.decoder_head,
use_coop=self.args.use_coop,
use_vpt=self.args.use_vpt,
coop_width=self.args.coop_width,
vpt_width=self.args.vpt_width,
vpt_depth= self.args.vpt_depth,
backbone = self.args.backbone,
use_fim = self.args.use_fim,
use_mixed_fim = self.args.use_mixed_fim,
unfreeze_vit = self.args.unfreeze_vit,
)
self.loss = F.mse_loss
self.contrastive_loss = ContrastiveLoss(0.07,self.args.noise_text_ratio, self.args.normalize_contrast)
self.neg_prompt_embed = None
def training_step(self, batch, batch_idx):
samples, gt_density, boxes, m_flag, prompt_gt, prompt_add = batch
output, extra_out = self.model(samples, prompt_gt, return_extra=True, coop_require_grad = True)
if not self.args.use_contrast:
prompt_gt = [f"a photo of {p}" for p in prompt_gt]
# Compute loss function
mask = np.random.binomial(n=1, p=0.8, size=[384,384])
masks = np.tile(mask,(output.shape[0],1))
masks = masks.reshape(output.shape[0], 384, 384)
masks = torch.from_numpy(masks).to(self.device)
loss = self.loss(output, gt_density)
loss = (loss * masks / (384*384)).sum() / output.shape[0]
if self.args.use_contrast and self.current_epoch <= self.args.contrast_pre_epoch:
text_embedding = extra_out['text_embedding'] # [B,1, 512]
if self.args.contrast_pos == "pre":
patch_embedding = extra_out['patch_embedding_contrast'] # [B, 196, 512]
elif self.args.contrast_pos == "post":
patch_embedding = extra_out['pixel_text_matching_map']
img_embedding = extra_out['x_cls'] # [B, 1, 512]
contrast_loss = self.contrastive_loss(patch_embedding, img_embedding, text_embedding, self.neg_prompt_embed, gt_density.detach().clone())
loss = args.w_contrast * contrast_loss
self.log('train_loss_contrast', contrast_loss)
self.log('train_loss', loss)
# Update information of MAE and RMSE
batch_mae = 0
batch_rmse = 0
gt_sum = 0
for i in range(output.shape[0]):
pred_cnt = torch.sum(output[i]/SCALE_FACTOR).item()
gt_cnt = torch.sum(gt_density[i]/SCALE_FACTOR).item()
cnt_err = abs(pred_cnt - gt_cnt)
gt_sum += gt_cnt
batch_mae += cnt_err
batch_rmse += cnt_err ** 2
batch_mae /= output.shape[0]
batch_rmse /= output.shape[0]
batch_rmse = math.sqrt(batch_rmse)
# loss = loss / gt_sum
self.log('train_mae', batch_mae)
self.log('train_rmse', batch_rmse)
return loss
def validation_step(self, batch, batch_idx):
samples, gt_density, _, _, prompt, _ = batch
if not self.args.use_contrast:
prompt = [f"a photo of {p}" for p in prompt]
output = self.model(samples, prompt)
# Update information of MAE and RMSE
batch_mae = []
batch_rmse = []
pred_cnts = []
gt_cnts = []
for i in range(output.shape[0]):
pred_cnt = torch.sum(output[i]/SCALE_FACTOR).item() # SCALE_FACTOR is the scaling factor as CounTR uses
gt_cnt = torch.sum(gt_density[i]/SCALE_FACTOR).item()
cnt_err = abs(pred_cnt - gt_cnt)
batch_mae.append(cnt_err)
batch_rmse.append(cnt_err ** 2)
pred_cnts.append(pred_cnt)
gt_cnts.append(gt_cnt)
#log the image
img_log = samples[0].detach().cpu().numpy()
pred_density = output[0].detach().cpu().numpy()
pred_log_rgb = cv2.applyColorMap(np.uint8(255*pred_density), cv2.COLORMAP_JET)
pred_log_rgb = np.transpose(pred_log_rgb, (2,0,1))
gt_density_log = gt_density[0].detach().cpu().numpy()
gt_log_rgb = cv2.applyColorMap(np.uint8(255*gt_density_log), cv2.COLORMAP_JET)
gt_log_rgb = np.transpose(gt_log_rgb, (2,0,1))
pred_density = einops.repeat(pred_density, 'h w -> c h w', c=3)
pred_density = pred_density / pred_density.max() #normalize
heatmap_pred = 0.33 * img_log + 0.67 * pred_density
gt_density_log = einops.repeat(gt_density_log, 'h w -> c h w', c=3)
heatmap_gt = 0.33 * img_log + 0.67 * gt_density_log
return {"mae": batch_mae, "rmse": batch_rmse, "img": img_log, "pred": pred_log_rgb, "gt": gt_log_rgb, "heatmap_pred": heatmap_pred, "heatmap_gt": heatmap_gt, "prompt": prompt[0], "pred_cnts": pred_cnts, "gt_cnts": gt_cnts}
def validation_epoch_end(self, outputs):
all_mae = []
all_rmse = []
for output in outputs:
all_mae += output["mae"]
all_rmse += output["rmse"]
val_mae = np.mean(all_mae)
val_rmse = np.sqrt(np.mean(all_rmse))
self.log('val_mae', val_mae)
self.log('val_rmse', val_rmse)
# log the image
idx = random.randint(0, len(outputs)-1)
img = outputs[idx]["img"]
pred = outputs[idx]["pred"]
gt = outputs[idx]["gt"]
heatmap_pred = outputs[idx]["heatmap_pred"]
heatmap_gt = outputs[idx]["heatmap_gt"]
prompt = outputs[idx]["prompt"]
pred_cnts = outputs[idx]["pred_cnts"]
gt_cnts = outputs[idx]["gt_cnts"]
pred_gt = "pred: {:.2f} gt: {:.2f}".format(pred_cnts[0], gt_cnts[0])
self.logger.experiment.add_image("val_img", img, self.current_epoch)
self.logger.experiment.add_image("density_pred", pred, self.current_epoch)
self.logger.experiment.add_image("density_gt", gt, self.current_epoch)
self.logger.experiment.add_image("overlay_pred", heatmap_pred, self.current_epoch)
self.logger.experiment.add_image("overlay_gt", heatmap_gt, self.current_epoch)
self.logger.experiment.add_text("prompt", prompt, self.current_epoch)
self.logger.experiment.add_text("count", pred_gt, self.current_epoch)
def test_step(self, batch, batch_idx):
if self.args.dataset_type=='FSC' or self.args.dataset_type == "COCO":
image, gt_density, boxes, m_flag, prompt = batch
elif self.args.dataset_type == "CARPK":
image, gt_cnt = batch
gt_cnt = gt_cnt.item()
prompt = ["car" for _ in range(image.shape[0])]
gt_density = torch.zeros(image.shape[0], image.shape[2], image.shape[3])
elif self.args.dataset_type == "ShanghaiTech":
image, gt_cnt = batch
gt_cnt = gt_cnt.item()
prompt = ["people" for _ in range(image.shape[0])]
gt_density = torch.zeros(image.shape[0], image.shape[2], image.shape[3])
assert image.shape[0] == 1 , "only support inference one image at a time"
raw_h, raw_w = image.shape[2:]
patches, _ = misc.sliding_window(image,stride=128)
#covert to batch
patches = torch.from_numpy(patches).float().to(self.device)
prompt = np.repeat(prompt, patches.shape[0], axis=0)
output = self.model(patches, prompt)
output.unsqueeze_(1)
output = misc.window_composite(output, stride=128)
output = output.squeeze(1)
#crop to original width
output = output[:, :, :raw_w]
# Update information of MAE and RMSE
batch_mae = []
batch_rmse = []
pred_cnts = []
gt_cnts = []
pred_cnt = torch.sum(output[0]/SCALE_FACTOR).item()
if self.args.dataset_type == "FSC" or self.args.dataset_type == "COCO":
gt_cnt = torch.sum(gt_density[0]/SCALE_FACTOR).item()
cnt_err = abs(pred_cnt - gt_cnt)
batch_mae.append(cnt_err)
batch_rmse.append(cnt_err ** 2)
pred_cnts.append(pred_cnt)
gt_cnts.append(gt_cnt)
#log the image
img_log = image[0].detach().cpu().numpy()
pred_density = output[0].detach().cpu().numpy()
pred_log_rgb = cv2.applyColorMap(np.uint8(255*pred_density), cv2.COLORMAP_JET)
pred_log_rgb = np.transpose(pred_log_rgb, (2,0,1))
gt_density_log = gt_density[0].detach().cpu().numpy()
gt_log_rgb = cv2.applyColorMap(np.uint8(255*gt_density_log), cv2.COLORMAP_JET)
gt_log_rgb = np.transpose(gt_log_rgb, (2,0,1))
pred_density = einops.repeat(pred_density, 'h w -> c h w', c=3)
pred_density = pred_density / pred_density.max() #normalize
heatmap_pred = img_log
heatmap_pred = 0.33 * img_log + 0.67 * pred_density
gt_density_log = einops.repeat(gt_density_log, 'h w -> c h w', c=3)
heatmap_gt = img_log
# log qualitative results
if self.args.log_test_img:
if cnt_err < 5:
#log density
log_dir = "out/good_density/"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
name = "good_{}_{:.2f}_gt_{:.2f}.jpg".format(prompt[0], pred_cnt, gt_cnt)
pred_density_write = 1. - pred_density[0]
pred_density_write = cv2.applyColorMap(np.uint8(255*pred_density_write), cv2.COLORMAP_JET)
img = Image.fromarray(np.uint8(pred_density_write))
img.save(log_dir + name)
log_dir = "out/good_pred/"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
#log overlay
name = "good_{}_{:.2f}_gt_{:.2f}.jpg".format(prompt[0], pred_cnt, gt_cnt)
pred_density_write = pred_density_write / 255.
img_write = 0.33 * np.transpose(img_log,(1,2,0)) + 0.67 * pred_density_write
img = Image.fromarray(np.uint8(255*img_write))
img.save(log_dir + name)
if cnt_err > 100:
#save image, overlaied
#log density
name = "good_{}_{:.2f}_gt_{:.2f}.jpg".format(prompt[0], pred_cnt, gt_cnt)
pred_density_write = 1. - pred_density[0]
pred_density_write = cv2.applyColorMap(np.uint8(255*pred_density_write), cv2.COLORMAP_JET)
log_dir = "debug/bad_pred/"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
name = "bad_{}_{:.2f}_gt_{:.2f}.jpg".format(prompt[0], pred_cnt, gt_cnt)
pred_density_write = pred_density_write / 255.
img_write = 0.33 * np.transpose(img_log,(1,2,0)) + 0.67 * pred_density_write
img = Image.fromarray(np.uint8(255*img_write))
img.save(log_dir + name)
return {"mae": batch_mae, "rmse": batch_rmse, "img": img_log, "pred": pred_log_rgb, "gt": gt_log_rgb, "heatmap_pred": heatmap_pred, "heatmap_gt": heatmap_gt, "prompt": prompt[0], "pred_cnts": pred_cnts, "gt_cnts": gt_cnts}
def test_epoch_end(self, outputs):
all_mae = []
all_rmse = []
for output in outputs:
all_mae += output["mae"]
all_rmse += output["rmse"]
test_mae = np.mean(all_mae)
test_rmse = np.sqrt(np.mean(all_rmse))
self.log('test_mae', test_mae)
self.log('test_rmse', test_rmse)
def forward(self, img, prompt):
"""
img: (1, 3, H, W)
prompt: List[str]
"""
return self.model(img, prompt)
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.model.parameters(),
lr=self.args.lr,
betas=(0.9, 0.95),
weight_decay=self.args.weight_decay,
)
schedular = torch.optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.33)
return {"optimizer": optimizer, "lr_scheduler": schedular, "monitor": "val_mae"}
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
# delete frozen clip parameters
if not self.args.unfreeze_vit :
for k in list(checkpoint["state_dict"].keys()):
if k.startswith("model.clip") or k.startswith("model.img_encoder.clip") or k.startswith("model.text_encoder.clip") or k.startswith("model.img_encoder.vit"):
del checkpoint["state_dict"][k]
def overwrite_args(self, args):
"""Avoid the exception caused by lighting when loading incompatible args from model ckpt."""
self.args = args
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
seed = args.seed
seed_everything(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
dataset_train = FSC147(split = "train")
all_classes_train = dataset_train.all_classes
sampler_train = torch.utils.data.RandomSampler(dataset_train)
train_dataloader = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
# the val set for training.
dataset_val = FSC147( split = "val")
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
val_dataloader = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
save_callback = pl.callbacks.ModelCheckpoint(monitor='val_mae', save_top_k=4, mode='min', filename='{epoch}-{val_mae:.2f}')
model = Model(args,all_classes=all_classes_train)
logger = pl.loggers.TensorBoardLogger("lightning_logs", name=args.exp_name)
trainer = Trainer(
accelerator="gpu",
callbacks=[save_callback],
accumulate_grad_batches = args.accum_iter,
precision=16,
max_epochs=args.epochs+args.contrast_pre_epoch,
logger=logger,
check_val_every_n_epoch=args.val_freq,
)
if args.mode == "train":
if args.ckpt is not None:
model = Model.load_from_checkpoint(args.ckpt, strict=False)
trainer.fit(model, train_dataloader, val_dataloader)
elif args.mode == "test":
if args.dataset_type == "FSC":
dataset_val = FSC147(split = "val", resize_val=False)
dataset_test = FSC147(split = "test")
elif args.dataset_type == "COCO":
dataset_val = FSC147(split = "val_coco", resize_val=False)
dataset_test = FSC147(split = "test_coco")
elif args.dataset_type == "CARPK":
dataset_val = dataset_test = CARPK(None, split="test")
elif args.dataset_type == "ShanghaiTech":
dataset_val = dataset_test = ShanghaiTech(None, split="test", part = "B")
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
# when inference, batch size is always 1
val_dataloader = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
test_dataloader = torch.utils.data.DataLoader(
dataset_test, sampler=sampler_test,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
if args.ckpt is None:
raise ValueError("Please specify a checkpoint to test")
model = Model.load_from_checkpoint(args.ckpt,strict=False)
model.overwrite_args(args)
model.eval()
if args.dataset_type == "FSC" or args.dataset_type == "COCO": #CARPK and ShanghaiTech do not have val set
print("====Metric on val set====")
trainer.test(model, val_dataloader)
print("====Metric on test set====")
trainer.test(model, test_dataloader)
elif args.mode == "app":
if args.ckpt is None:
raise ValueError("Please specify a checkpoint to test")
model = Model.load_from_checkpoint(args.ckpt,strict=False)
model.eval()
def infer(img, prompt):
model.eval()
model.model = model.model.cuda()
with torch.no_grad():
# reshape height to 384, keep aspect ratio
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).cuda()
img = TF.resize(img, (384))
img = img.float()/255.
img = torch.clamp(img, 0, 1)
prompt = [prompt]
with torch.cuda.amp.autocast():
raw_h, raw_w = img.shape[2:]
patches, _ = misc.sliding_window(img,stride=128)
#covert to batch
patches = torch.from_numpy(patches).float().to(img.device)
prompt = np.repeat(prompt, patches.shape[0], axis=0)
output = model.forward(patches, prompt)
output.unsqueeze_(1)
output = misc.window_composite(output, stride=128)
output = output.squeeze(1)
#crop to original width
output = output[:, :, :raw_w]
pred_cnt = torch.sum(output[0]/SCALE_FACTOR).item()
pred_density = output[0].detach().cpu().numpy()
# normalize
pred_density = pred_density/pred_density.max()
pred_density_write = 1. - pred_density
pred_density_write = cv2.applyColorMap(np.uint8(255*pred_density_write), cv2.COLORMAP_JET)
pred_density_write = pred_density_write/255.
# pred_rgb = cv2.applyColorMap(np.uint8(255*pred_density), cv2.COLORMAP_JET)
img = img.squeeze(0).permute(1, 2, 0).detach().cpu().numpy()
heatmap_pred = 0.33 * img + 0.67 * pred_density_write
heatmap_pred = heatmap_pred/heatmap_pred.max()
return heatmap_pred, pred_cnt
demo = gr.Interface(
fn=infer,
inputs=[
# height = 384, keep aspect ratio
gr.inputs.Image(label="Image"),
gr.inputs.Textbox(lines=1, label="Prompt (What would you like to count)"),
],
outputs= ["image", "number"],
interpretation="default",
title="CLIP-Count",
description="A unified counting model to count them all.",
)
demo.launch(share=True)