-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
103 lines (86 loc) · 2.77 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 3 20:47:31 2021
@author: SreeKeerthiGudipatiR
"""
import cv2
import numpy as np
import glob
import random
from flask import Flask, render_template
app=Flask(__name__)
x=10
num=0
net = cv2.dnn.readNet("yolov3_training_last.weights", "yolov3_testing.cfg")
# Name custom object
classes = ["apple"]
labe="Apple"
# Images path
images_path = glob.glob(r"C:\Users\SreeKeerthiGudipatiR\Downloads\1_iot\testt\*.jpg")
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
random.shuffle(images_path)
def detection():
x=5
count=0
img_path=images_path[5]
img = cv2.imread(img_path)
img = cv2.resize(img, None, fx=0.4, fy=0.4)
height, width, channels = img.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.3:
# Object detected
print(class_id)
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
print(class_ids)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
print(indexes)
#print("+++++++++++")
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[class_ids[i]]
print(label)
if(label=="apple"):
count=count+1
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label, (x, y + 30), font, 3, color, 2)
#print("^^^^^^^^^^^^^")
print(count)
cv2.imshow("Image", img)
key = cv2.waitKey(0)
summ=count
return count
#cv2.destroyAllWindows()
@app.route("/home")
@app.route("/")
def home():
summ= detection()
link="https://www.bigbasket.com/ps/?q="+labe
return render_template("check.html", data=summ, name= labe, link=link)
if __name__=="__main__":
app.run(debug=True)