-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_imgae.py
222 lines (177 loc) · 8.36 KB
/
detect_imgae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import sys
from flask import Flask, request, json, jsonify, render_template
from flask import flash
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords,
xyxy2xywh, plot_one_box, strip_optimizer, set_logging)
from utils.torch_utils import select_device, load_classifier, time_synchronized
from utils import *
app = Flask(__name__)
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
weights = 'runs/exp6_yolov5x_airbnb_results/weights/best.pt' if len(sys.argv) == 1 else sys.argv[1]
device_number = '' if len(sys.argv) <=2 else sys.argv[2]
device = torch_utils.select_device(device_number)
model = attempt_load(weights, map_location=device) # load FP32 model
UPLOAD_FOLDER = "inference/images/"
SAVE_FOLDER = "static/"
def detect(source, out):
imgsz = 416
conf_thres = 0.35
iou_thres = 0.5
save_img=True
view_img = True
save_txt = True
classes = None
agnostic_nms = False
augment = False
update = False
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http')
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
# model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_synchronized()
pred = model(img, augment=augment)[0]
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes=classes, agnostic=agnostic_nms)
t2 = torch_utils.time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].detach().unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 6 + '\n') % (cls, *xywh, conf)) # label format
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform.system() == 'darwin' and not update: # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
names = ['Bathtub', 'Bed', 'Billiard table', 'Ceiling fan', 'Coffeemaker', 'Couch', 'Countertop', 'Dishwasher', 'Fireplace', 'Fountain',
'Gas stove', 'Jacuzzi', 'Kitchen & dining room table', 'Microwave oven', 'Mirror', 'Oven', 'Pillow', 'Porch', 'Refrigerator', 'Shower',
'Sink', 'Sofa bed', 'Stairs', 'Swimming pool', 'Television', 'Toilet', 'Towel', 'Tree house', 'Washing machine', 'Wine rack']
amen = []
for i in names:
if str(i) in s:
amen.append(i)
if not amen:
amen.append('None')
else:
amen
return json.dumps(amen, default = lambda x: x.__dict__) if amen is None else json.dumps(amen, default = lambda x: x.__dict__)
@app.route("/", methods=['GET', "POST"])
def upload_predict():
if request.method == "POST":
if 'image' not in request.files:
flash('No file part')
return redirect(request.url)
image_file = request.files["image"]
if image_file.filename == '':
flash('No selected file')
return redirect(request.url)
if image_file and allowed_file(image_file.filename):
image_source = os.path.join(
UPLOAD_FOLDER,
image_file.filename
)
image_location = os.path.join(
SAVE_FOLDER,
image_file.filename
)
image_file.save(image_source)
#source = image_location/image_file.filename
result = detect(image_source, SAVE_FOLDER)
return render_template("index.html", amenities=result, image_loc= image_file.filename)
return render_template("index.html", amenities=None, image_loc=None)
if __name__ == '__main__':
app.run(port=12000, debug=True, use_reloader=True, use_debugger=True)