-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotFitCoefficients.m
435 lines (365 loc) · 11.7 KB
/
plotFitCoefficients.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
function [tcM, tcMall, tcMinfo] = plotFitCoefficients(tcMall)
% Check that tcMall is specified:
% narginchk(1, 1)
% tcMall should be an array of objects of type tcMeas:
assert(isa(tcMall,'tcMeas'));
tcMall = spectraFiles(tcMall);
tcM = tcMall;
conditionTCs(tcMall);
%% Error checking:
assert(length([tcM.T]) == length(tcM));
assert(length([tcM.flux]) == length(tcM));
assert(length([tcM.vout]) == length(tcM));
assert(length([tcM.fMax]) == length(tcM));
assert(length([tcM.SQUID]) == length(tcM));
assert(length([tcM.startTime])/6 == length(tcM));
%% Specify settings:
fMin = 0.1;
fMax = 350;
fitLorentz = false;
enforceWN = true;
% xAxis = 'SQUID';
% xAxis = 'T';
% xAxis = 'RW';
% xAxis = 'logW';
avgOn = false;
f0 = 1; % A^2 = S_Phi(f0)
%% Pick time captures for tcM:
% Choose the run:
% tcM = tcM(cellStrToInd({tcMall.runName},'NIST1_c1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'NIST1_c4'));
% tcM = tcM(cellStrToInd({tcMall.runName},'NIST2_c1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'UIUCe452_c1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'UIUCe455_c1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'Jeff1_c1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'MIT5B3_c1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'MIT5C3_c1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'UIUC1_c1'));
% Gold-capped SQUIDs:
% tcM = tcM(cellStrToInd({tcMall.runName},'Chris1_c1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'Chris2_c2'));
% tcM = tcM(cellStrToInd({tcMall.runName},'Chris3_c1'));
% Silicon nitride:
% tcM = tcM(cellStrToInd({tcMall.runName},'NIST_SiNx1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'NIST_SiNx2'));
% tcM = tcM(cellStrToInd({tcMall.runName},'NIST_SiNx3'));
% tcM = tcM(cellStrToInd({tcMall.runName},'UIUC_NbNx1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'e523E'));
% tcM = tcM(cellStrToInd({tcMall.runName},'NIST3_c1'));
% tcM = tcM(cellStrToInd({tcMall.runName},'e543B'));
% tcM = tcM(cellStrToInd({tcMall.runName},'e544A'));
% tcM = tcM(cellStrToInd({tcMall.runName},'e544C'));
% tcM = tcM(cellStrToInd({tcMall.runName},'P77A'));
% tcM = tcM(cellStrToInd({tcMall.runName},'P77B'));
% tcM = tcM(cellStrToInd({tcMall.runName},'SiNx_bot'));
% tcM = tcM(cellStrToInd({tcMall.runName},'SiNx_topbot'));
% tcM = tcM(cellStrToInd({tcMall.runName},'epiAl_SiNx'));
% tcM = tcM(cellStrToInd({tcMall.runName},'SGS-BD'));
tcM = tcM(cellStrToInd({tcMall.runName},'SGS-AC'));
% tcM = tcMall(cellStrToInd({tcMall.runName},'NIST1_c1') | ...
% cellStrToInd({tcMall.runName},'NIST1_c4'));
% tcM = tcM(~cellfun(@isempty,strfind({tcM.filename},'junk')));
tcM = tcM([tcM.tcFileSize] > 50e6); % tc filesize greater than 50MB
% tcM = tcM([tcM.T] <= 1.6);
tcM = tcM([tcM.flux] ~= 0 & ~isnan([tcM.flux]) & [tcM.vout]>0 & ...
[tcM.vin]>0);
% tcM = tcM([tcM.flux] ~= 0.125);
tcM = tcM([tcM.flux] == 0.25);
% tcM = tcM([tcM.vout] > 0);
% tcM = tcM([tcM.totalTime] >= 3200*0.99); % Only hour-long captures
tcM = tcM(~[tcM.fluxModOn]);
tcM = tcM([tcM.fMax] == 400);
% tcM = tcM([tcM.fMax] < 1e3);
% tcM = tcM([tcM.SQUID] == 1);
% tcM = tcM([tcM.SQUID] == 1 | [tcM.SQUID] == 2 | [tcM.SQUID] == 5);
% tcM = tcM([tcM.SQUID] ~= 1);
% tcM = tcM(abs([tcM.R] - 5) < 0.1);
% tcM = tcM([tcM.R] > 0);
% tcM = tcM([tcM.R] ~= 10);
% dates = datenum(vertcat(tcM.startTime));
% tcM = tcM(dates > datenum([2011 6 17 0 0 0])); % flux modulation scheme
%
% tcM = tcM(~( dates < datenum([2011 5 3 8 0 0]) & ...
% dates > datenum([2011 5 2 20 0 0]) & ...
% [tcM.SQUID]' == 2 & strcmp({tcM.runName}','NIST1_c1')) );
%
% % Pick the lower bias voltage:
% tcM = tcM(~([tcM.SQUID] == 3 & [tcM.T] == 0.25 & [tcM.R] ~= 5.01 & ...
% strcmp({tcM.runName},'NIST1_c1')));
% tcM = tcM(~([tcM.SQUID] == 4 & [tcM.T] == 0.1 & [tcM.R] ~= 5.01 & ...
% strcmp({tcM.runName},'NIST1_c1')));
%% Remove crap time captures:
tcM = tcM( ~(strcmp({tcM.runName},'NIST1_c4') & [tcM.T] <= 1.5) );
tcM = tcM( ~(strcmp({tcM.runName},'NIST1_c4') & [tcM.SQUID] == 1) );
% White noise is all messed up:
tcM = tcM(~(([tcM.SQUID] == 2 | [tcM.SQUID] == 5 | [tcM.SQUID] == 6) & ...
[tcM.T] == 1.85 & strcmp({tcM.runName},'NIST1_c1') ));
tcM = tcM(~(([tcM.SQUID] == 2 | [tcM.SQUID] == 3) & ...
[tcM.T] == 2.2 & strcmp({tcM.runName},'NIST1_c1') ));
% Someone left on the dI/dPhi modulation signal:
tcM = tcM(~([tcM.SQUID] == 2 & ...
[tcM.T] == 1.0 & strcmp({tcM.runName},'NIST1_c4') ));
% SQUID 6 is jacked up:
tcM = tcM(~([tcM.SQUID] == 6 & strcmp({tcM.runName},'NIST2_c1') ));
% A big Lorentzian bump:
% tcM = tcM(~([tcM.SQUID] == 1 & ...
% [tcM.T] >= 1.5 & strcmp({tcM.runName},'NIST1_c4') ));
tcM = tcM(~([tcM.SQUID] == 2 & ...
[tcM.T] <= 0.4 & strcmp({tcM.runName},'Chris1_c1') ));
% Huge noise for some reason:
tcM = tcM(~([tcM.SQUID] == 5 & ...
[tcM.T] == 0.2 & strcmp({tcM.runName},'NIST1_c4') ));
% Too high in temperature:
tcM = tcM(~([tcM.T] > 0.3 & strcmp({tcM.runName},'Jeff1_c1') ));
% Paramagnetic noise?
tcM = tcM(~([tcM.T] == 0.05 & strcmp({tcM.runName},'UIUCe455_c1') ));
% Too high in temperature:
tcM = tcM(~([tcM.T] < 0.1 & strcmp({tcM.runName},'MIT5B3_c1') ));
%% Automatic geometry settings:
runNames = unique({tcM.runName});
if length(runNames) == 1
switch runNames{1}
case 'MIT5B3_c1'
RW = [12 6 3 1.5 1.5 1.5]/0.5;
case 'MIT5C3_c1'
R = [24 12 6 3 1.5 1.5];
W = [8 4 2 1 0.5 0.5];
RW = R./W;
logW = log10(W);
case 'Chris1_c1'
RW = ones(6,1) * 5/3;
logW = ones(6,1) * log10(3);
case {'NIST1_c1','NIST1_c4'}
R = [185 105 65 45 32.5 25];
W = [160 80 40 20 10 5];
RW = R./W;
case {'NIST3_c1'}
R = [265 145 85 55 40 30];
W = [240 120 60 30 15 7.5];
RW = R./W;
end
end
%% Get coefficients for all time captures:
if isempty(tcM)
disp('No time captures found...')
return
end
for i = 1:length(tcM)
if any([tcM.flux] == 0) || any(isnan([tcM.flux]))
tcM(i).yUnit = 'Ii';
else
tcM(i).yUnit = 'phi';
end
% Determine fMin:
if tcM(i).T >= 1.5, tcM(i).sf.fMin = 1;
else tcM(i).sf.fMin = fMin; end
% For NIST1_c4:
if strcmpi(tcM(i).runName,'NIST1_c4') && (tcM(i).T >= 1.5 || ...
tcM(i).SQUID == 1)
tcM(i).sf.fMin = 1;
end
% For NIST3_c1:
if strcmpi(tcM(i).runName,'NIST3_c1')
if tcM(i).T >= 1.4
tcM(i).sf.fMin = 1;
elseif tcM(i).T >= 1
tcM(i).sf.fMin = 0.1;
end
end
tcM(i).s.noNoise = true;
tcM(i).sf.fMin = fMin;
tcM(i).sf.fMax = fMax;
tcM(i).sf.fitLorentz = fitLorentz;
tcM(i).sf.enforceWN = enforceWN;
tcM(i).sf.updatedFit = false;
end
coeff = vertcat(tcM.coeff);
% coeff = reshape(coeff,6,length(coeff)/6)';
% coeff(coeff == 0) = NaN;
T = [tcM.T]';
SQUID = [tcM.SQUID]';
C2 = coeff(:,1);
gam = coeff(:,2);
A2 = coeff(:,3);
alph = coeff(:,4);
% Lamp = coeff(:,5);
% Lfreq = coeff(:,6);
% Struct to export:
tcMinfo = struct('runName',runNames, 'T',T, 'SQUID',SQUID, 'C2',C2, ...
'gamma',gam, 'A2',A2, 'alpha',alph);
if exist('RW', 'var'), tcMinfo.RW = RW; end
if exist('logW','var'), tcMinfo.logW = logW; end
%% Ghetto hack that I used once but never again:
% if false % remove spectra with high white noise:
% inds = C2*1e12 < 0.1 + [tcM.T]'/5;
% T = T(inds);
% SQUID = SQUID(inds);
% C2 = C2(inds);
% gam = gam(inds);
% A2 = A2(inds);
% alph = alph(inds);
% end
%% Determine x-axis:
if length(unique(T)) == 1, singleT = true;
else singleT = false; end
if length(unique(SQUID)) == 1, singleSQUID = true;
else singleSQUID = false; end
% if length(unique({tcM.runName})) == 1, singleRun = true;
% else singleRun = false; end
if ~exist('xAxis','var')
if ~singleT && ~singleSQUID
% xAxis = 'SQUID';
xAxis = 'T';
% xAxis = 'RW';
% xAxis = 'logW';
elseif singleT && ~singleSQUID
xAxis = 'SQUID';
% xAxis = 'logW';
% xAxis = 'RW';
elseif ~singleT && singleSQUID
xAxis = 'T';
end
end
% Determine x-axis:
switch xAxis
case 'SQUID'
xToPlot = SQUID;
xlabelStr = 'SQUID';
[b, ~, n] = unique(T);
xAxisScale = 'linear';
case 'RW'
xToPlot = RW(SQUID);
xlabelStr = 'R/W';
[b, ~, n] = unique(T);
xAxisScale = 'log';
case 'logW'
xToPlot = W(SQUID);
xlabelStr = 'W ({\mu}m)';
[b, ~, n] = unique(T);
xAxisScale = 'log';
case 'T'
xToPlot = T;
xlabelStr = 'T [K]';
[b, ~, n] = unique(SQUID);
xAxisScale = 'log';
% xAxisScale = 'linear';
end
switch xAxisScale
case 'linear'
plotYlog = @semilogy;
plotYlin = @plot;
case 'log'
plotYlog = @loglog;
plotYlin = @semilogx;
end
%% Plot figures:
colors = lines(length(b));
legends = cell(length(b),1);
figure
for i = 1:length(b)
% legends{i} = b{i};
legends{i} = sprintf('%g',b(i));
% Indices of data points to plot for this iteration of for loop:
indsA = A2>0 & n==i;
A2i = A2(indsA);
alphi = alph(indsA);
xToPloti = xToPlot(indsA);
if avgOn
[xToPloti, ~, navg] = unique(xToPloti);
A2Avg = NaN(size(xToPloti));
alphAvg = NaN(size(xToPloti));
for j = 1:length(xToPloti)
A2Avg(j) = mean(A2i(navg==j));
alphAvg(j) = mean(alphi(navg==j));
end
A2i = A2Avg;
alphi = alphAvg;
end
% Plot A:
subplot(2,2,1)
% plotYlog(xToPloti, A2i*1e12.*f0.^-alphi, '.-','color',colors(i,:),...
% 'MarkerSize',10)
% hold on
% xlabel(xlabelStr), ylabel('A^2 [(\mu\Phi_0)^2/Hz]')
% Plot <Phi^2>
plotYlog(xToPloti, A2i*1e12.*(10.^(9*(1-alphi))...
-10.^(-4.*(1-alphi)))./(1-alphi), '.-','color',colors(i,:),...
'MarkerSize',10)
hold on
xlabel(xlabelStr), ylabel('\langle\Phi^2\rangle [(\mu\Phi_0)^2]')
continue
% Plot alpha:
subplot(2,2,2)
plotYlin(xToPloti, alphi, '.-','color',colors(i,:),...
'MarkerSize',10)
hold on
xlabel(xlabelStr), ylabel('\alpha')
% continue
indsC = C2>0 & n==i;
% Plot C:
subplot(2,2,3)
plotYlog(xToPlot(indsC), C2(indsC)*1e12, '.-','color',colors(i,:),...
'MarkerSize',20)
hold on
xlabel(xlabelStr), ylabel('C^2 [(\mu\Phi_0)^2/Hz]')
% Plot gamma:
subplot(2,2,4)
plot(xToPlot(indsC), gam(indsC), '.-','color',colors(i,:),...
'MarkerSize',20)
hold on
xlabel(xlabelStr), ylabel('\gamma')
end
if length(b) > 1
legend(legends,'Interpreter','none')
end
title(sprintf('f_{min} = %g, f_{max} = %g',fMin,fMax))
end
%% Average like spectra:
% plotAverage = false;
%
% [b, m, n] = unique([[tcM.T]', [tcM.SQUID]'],'rows');
%
% s = spectrum.empty(length(m),0);
% sf = sFit.empty(length(m),0);
%
% if plotAverage, colors = lines(length(m)); figure, end
% Rsq = zeros(length(m),1);
% for i = 1:length(m)
% s(i) = mean(tcM(n==i));
% s(i).noNoise = true;
% sf(i) = sFit(s(i));
%
% % sf(i).fMin = fMin;
% % sf(i).fMax = fMax;
% sf(i).fitLorentz = fitLorentz;
% sf(i).enforceWN = enforceWN;
%
% if plotAverage
% plot(s(i),'Color',colors(i,:))
% hold on
% plot(sf(i),'Color',colors(i,:))
% end
%
% % Calculate R^2:
% temp = (sf(i).SyFit.S - sf(i).s.S).^2;
% Rsq(i) = sum(temp(fMin <= s(i).f & s(i).f <= fMax));
% end
% % xlim([fMin fMax])
%
% coeffAvg = reshape([sf.coeff],6,length(sf))';
%
% figure
% colors = lines(6);
% for i=1:6
% plot( b(b(:,2)==i,1), coeffAvg(b(:,2)==i,3), '-o', 'color', colors(i,:))
% hold on
% end
%
% figure
% colors = lines(6);
% for i=1:6
% plot( b(b(:,2)==i,1), coeffAvg(b(:,2)==i,4), '-o', 'color', colors(i,:))
% hold on
% end
%
% return