You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
E:\DeepLearning\envs\tensorflow_gpuenv\lib\site-packages\torch\optim\adam.py in step(self, closure)
56 loss = None
57 if closure is not None:
---> 58 loss = closure()
59
60 for group in self.param_groups:
RuntimeError Traceback (most recent call last)
in
28 engine.hooks['on_end_epoch'] = on_end_epoch
29
---> 30 engine.train(processor, get_iterator(True), maxepoch=NUM_EPOCHS, optimizer=optimizer)
E:\DeepLearning\envs\tensorflow_gpuenv\lib\site-packages\torchnet\engine\engine.py in train(self, network, iterator, maxepoch, optimizer)
61
62 state['optimizer'].zero_grad()
---> 63 state['optimizer'].step(closure)
64 self.hook('on_update', state)
65 state['t'] += 1
E:\DeepLearning\envs\tensorflow_gpuenv\lib\site-packages\torch\optim\adam.py in step(self, closure)
56 loss = None
57 if closure is not None:
---> 58 loss = closure()
59
60 for group in self.param_groups:
E:\DeepLearning\envs\tensorflow_gpuenv\lib\site-packages\torchnet\engine\engine.py in closure()
50
51 def closure():
---> 52 loss, output = state'network'
53 state['output'] = output
54 state['loss'] = loss
in processor(sample)
16 classes, reconstructions = model(data)
17
---> 18 loss = capsule_loss(data, labels, classes, reconstructions)
19 return loss, classes
20
E:\DeepLearning\envs\tensorflow_gpuenv\lib\site-packages\torch\nn\modules\module.py in call(self, *input, **kwargs)
530 result = self._slow_forward(*input, **kwargs)
531 else:
--> 532 result = self.forward(*input, **kwargs)
533 for hook in self._forward_hooks.values():
534 hook_result = hook(self, input, result)
in forward(self, images, labels, classes, reconstrunctions)
14 #images = images.view(reconstructions.size()[0], -1)
15
---> 16 reconstrunction_loss = self.reconstrunction_loss(reconstrunctions, images)
17
18 return (margin_loss + 0.0005 * reconstrunction_loss) / images.size(0)
E:\DeepLearning\envs\tensorflow_gpuenv\lib\site-packages\torch\nn\modules\module.py in call(self, *input, **kwargs)
530 result = self._slow_forward(*input, **kwargs)
531 else:
--> 532 result = self.forward(*input, **kwargs)
533 for hook in self._forward_hooks.values():
534 hook_result = hook(self, input, result)
E:\DeepLearning\envs\tensorflow_gpuenv\lib\site-packages\torch\nn\modules\loss.py in forward(self, input, target)
429
430 def forward(self, input, target):
--> 431 return F.mse_loss(input, target, reduction=self.reduction)
432
433
E:\DeepLearning\envs\tensorflow_gpuenv\lib\site-packages\torch\nn\functional.py in mse_loss(input, target, size_average, reduce, reduction)
2213 ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
2214 else:
-> 2215 expanded_input, expanded_target = torch.broadcast_tensors(input, target)
2216 ret = torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
2217 return ret
E:\DeepLearning\envs\tensorflow_gpuenv\lib\site-packages\torch\functional.py in broadcast_tensors(*tensors)
50 [0, 1, 2]])
51 """
---> 52 return torch._C._VariableFunctions.broadcast_tensors(tensors)
53
54
RuntimeError: The size of tensor a (784) must match the size of tensor b (28) at non-singleton dimension 3
The text was updated successfully, but these errors were encountered: