-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path20NewsBatchTest4.py
275 lines (191 loc) · 9.96 KB
/
20NewsBatchTest4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from collections import Counter
import tensorflow as tf
from sklearn.datasets import fetch_20newsgroups
import matplotlib as mplt
mplt.use('agg') # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
from string import punctuation
from sklearn.preprocessing import LabelBinarizer
import numpy as np
from nltk.corpus import stopwords
from sklearn.utils import shuffle
from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score
from sklearn.model_selection import train_test_split
import nltk
nltk.download('stopwords')
#reduced number of classes to 4 and sequnce size to 1000 and changed state when training to let the previouse state to flow to the current state
def pre_process():
# categories =['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
# 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey',
# 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns',
# 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']
categories_comp = ['comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x']
comp = fetch_20newsgroups(subset='all', categories=categories_comp, remove=('headers', 'footers', 'quotes'))
categories_rec = ['rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey']
rec = fetch_20newsgroups(subset='all', categories=categories_rec, remove=('headers', 'footers', 'quotes'))
categories_politics = ['talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc']
politics = fetch_20newsgroups(subset='all', categories=categories_politics, remove=('headers', 'footers', 'quotes'))
categories_religion = ['talk.religion.misc', 'soc.religion.christian']
religion = fetch_20newsgroups(subset='all', categories=categories_religion, remove=('headers', 'footers', 'quotes'))
data_labels = []
for post in comp.data:
data_labels.append(1)
for post in rec.data:
data_labels.append(2)
for post in politics.data:
data_labels.append(3)
for post in religion.data:
data_labels.append(4)
news_data = []
for post in comp.data:
news_data.append(post)
for post in rec.data:
news_data.append(post)
for post in politics.data:
news_data.append(post)
for post in religion.data:
news_data.append(post)
newsgroups_data, newsgroups_labels = shuffle(news_data, data_labels, random_state=42)
words = []
temp_post_text = []
print(len(newsgroups_data))
for post in newsgroups_data:
all_text = ''.join([text for text in post if text not in punctuation])
all_text = all_text.split('\n')
all_text = ''.join(all_text)
temp_text = all_text.split(" ")
for word in temp_text:
if word.isalpha():
temp_text[temp_text.index(word)] = word.lower()
# temp_text = [word for word in temp_text if word not in stopwords.words('english')]
temp_text = list(filter(None, temp_text))
temp_text = ' '.join([i for i in temp_text if not i.isdigit()])
words += temp_text.split(" ")
temp_post_text.append(temp_text)
# temp_post_text = list(filter(None, temp_post_text))
dictionary = Counter(words)
# deleting spacesA
# del dictionary[""]
sorted_split_words = sorted(dictionary, key=dictionary.get, reverse=True)
vocab_to_int = {c: i for i, c in enumerate(sorted_split_words,1)}
message_ints = []
for message in temp_post_text:
temp_message = message.split(" ")
message_ints.append([vocab_to_int[i] for i in temp_message])
# # maximum message length = 4984
message_lens = Counter([len(x) for x in message_ints])
seq_length = 100
num_messages = len(temp_post_text)
features = np.zeros([num_messages, seq_length], dtype=int)
for i, row in enumerate(message_ints):
features[i, :len(row)] = np.array(row)[:seq_length]
lb = LabelBinarizer()
# lbl = newsgroups_data.target
# labels = np.reshape(lbl, [-1])
labels = lb.fit_transform(newsgroups_labels)
# sequence_lengths = [len(msg) for msg in message_ints]
sequence_lengths = []
for msg in message_ints:
lentemp = len(msg)
if lentemp > 100:
lentemp = 100
sequence_lengths.append(lentemp)
return features, labels, len(sorted_split_words)+1, sequence_lengths
def get_batches(x, y, sql, batch_size=100):
n_batches = len(x) // batch_size
x, y = x[:n_batches * batch_size], y[:n_batches * batch_size]
for ii in range(0, len(x), batch_size):
yield x[ii:ii + batch_size], y[ii:ii + batch_size], sql[ii:ii+batch_size]
def train_test():
features, labels, n_words, sequence_length = pre_process()
train_x, test_x, train_y, test_y = train_test_split(features, labels, test_size=0.2, shuffle=False, random_state=42)
sequence_length_train = sequence_length[:len(train_y)]
sequence_length_test= sequence_length[len(train_y):]
# Defining Hyperparameters
lstm_layers = 1
batch_size = 64
lstm_size = 128
learning_rate = 0.01
epoch = 1
print("learning 32")
# --------------placeholders-------------------------------------
# Create the graph object
graph = tf.Graph()
# Add nodes to the graph
with graph.as_default():
tf.set_random_seed(1)
inputs_ = tf.placeholder(tf.int32, [None, None], name="inputs")
# labels_ = tf.placeholder(dtype= tf.int32)
labels_ = tf.placeholder(tf.float32, [None, None], name="labels")
sql_in = tf.placeholder(tf.int32, [None], name='sql_in')
# Size of the embedding vectors (number of units in the embedding layer)
embed_size = 300
# generating random values from a uniform distribution (minval included and maxval excluded)
embedding = tf.Variable(tf.random_uniform((n_words, embed_size), -1, 1))
embed = tf.nn.embedding_lookup(embedding, inputs_)
# Your basic LSTM cell
lstm = tf.contrib.rnn.BasicLSTMCell(num_units=lstm_size, forget_bias=1.0)
# Getting an initial state of all zeros
initial_state = lstm.zero_state(batch_size, tf.float32)
outputs, final_state = tf.nn.dynamic_rnn(lstm, embed, initial_state=initial_state, sequence_length=sql_in)
out_batch_size = tf.shape(outputs)[0]
out_max_length = tf.shape(outputs)[1]
out_size = int(outputs.get_shape()[2])
index = tf.range(0, out_batch_size) * out_max_length + (sql_in - 1)
flat = tf.reshape(outputs, [-1, out_size])
relevant = tf.gather(flat, index)
# hidden layer
hidden = tf.layers.dense(relevant, units=25, activation=tf.nn.relu)
logit = tf.contrib.layers.fully_connected(hidden, num_outputs=4, activation_fn=None)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=labels_))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
saver = tf.train.Saver()
# ----------------------------batch training-----------------------------------------
with tf.Session(graph=graph) as sess:
tf.set_random_seed(1)
sess.run(tf.global_variables_initializer())
iteration = 1
for e in range (epoch):
state = sess.run(initial_state)
for ii, (x, y, sql) in enumerate(get_batches(np.array(train_x), np.array(train_y), sequence_length_train, batch_size), 1):
feed = {inputs_: x,
labels_: y,
sql_in: sql,
initial_state: state}
loss, states, _ = sess.run([cost, final_state, optimizer], feed_dict=feed)
if iteration % 5 == 0:
print("Epoch: {}/{}".format(e, epoch),
"Iteration: {}".format(iteration),
"Train loss: {:.3f}".format(loss))
iteration += 1
saver.save(sess, "checkpoints/sentiment.ckpt")
# -----------------testing test set-----------------------------------------
print("starting testing set")
argmax_pred_array = []
argmax_label_array = []
with tf.Session(graph=graph) as sess:
tf.set_random_seed(1)
saver.restore(sess, tf.train.latest_checkpoint('checkpoints'))
test_state = sess.run(lstm.zero_state(batch_size, tf.float32))
for ii, (x, y, sql) in enumerate(get_batches(np.array(test_x), np.array(test_y), sequence_length_test, batch_size), 1):
feed = {inputs_: x,
labels_: y,
sql_in: sql,
initial_state: test_state}
predictions = tf.nn.softmax(logit).eval(feed_dict=feed)
for i in range(len(predictions)):
argmax_pred_array.append(np.argmax(predictions[i], 0))
argmax_label_array.append(np.argmax(y[i], 0))
print(len(argmax_pred_array))
print(len(argmax_label_array))
accuracy = accuracy_score(argmax_label_array, argmax_pred_array)
batch_f1 = f1_score(argmax_label_array, argmax_pred_array, average="macro")
batch_recall = recall_score(y_true=argmax_label_array, y_pred=argmax_pred_array, average='macro')
batch_precision = precision_score(argmax_label_array, argmax_pred_array, average='macro')
print("-----------------testing test set-----------------------------------------")
print("Test accuracy: {:.3f}".format(accuracy))
print("F1 Score: {:.3f}".format(batch_f1))
print("Recall: {:.3f}".format(batch_recall))
print("Precision: {:.3f}".format(batch_precision))
if __name__ == '__main__':
train_test()