-
Notifications
You must be signed in to change notification settings - Fork 4
/
Enron_Online.py
207 lines (150 loc) · 6.57 KB
/
Enron_Online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
from collections import Counter
import tensorflow as tf
import numpy as np
from sklearn.metrics import f1_score, recall_score, precision_score
from string import punctuation
import matplotlib as mplt
mplt.use('agg') # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
def pre_process():
direc = "enron/emails/"
files = os.listdir(direc)
emails = [direc+email for email in files]
words = []
temp_email_text = []
labels = []
hamcounter=0
spamcounter =0
for email in emails:
if "ham" in email:
labels.append(0)
hamcounter +=1
else:
labels.append(1)
spamcounter +=1
f = open(email,encoding="utf8", errors='ignore')
blob = f.read()
all_text = ''.join([text for text in blob if text not in punctuation])
all_text = all_text.split('\n')
all_text = ''.join(all_text)
temp_text = all_text.split(" ")
for word in temp_text:
if word.isalpha():
temp_text[temp_text.index(word)] = word.lower()
temp_text = list(filter(None, temp_text))
temp_text = ' '.join([i for i in temp_text if not i.isdigit()])
words += temp_text.split(" ")
temp_email_text.append(temp_text)
dictionary = Counter(words)
#deleting spaces
del dictionary[""]
sorted_split_words = sorted(dictionary, key=dictionary.get, reverse=True)
vocab_to_int = {c: i for i, c in enumerate(sorted_split_words, 1)}
message_ints = []
for message in temp_email_text:
temp_message = message.split(" ")
message_ints.append([vocab_to_int[i] for i in temp_message])
#maximum message length = 3423
message_lens = Counter([len(x) for x in message_ints])
seq_length = 3425
num_messages = len(temp_email_text)
features = np.zeros([num_messages,seq_length], dtype=int)
for i, row in enumerate(message_ints):
features[i, -len(row):] = np.array(row)[:seq_length]
print(hamcounter)
print(spamcounter)
return features, np.array(labels), sorted_split_words
def get_batches(x, y, batch_size=100):
for ii in range(0, len(y), batch_size):
yield x[ii:ii + batch_size], y[ii:ii + batch_size]
def plot(noOfWrongPred, dataPoints):
font_size = 14
fig = plt.figure(dpi=100,figsize=(10, 6))
mplt.rcParams.update({'font.size': font_size})
plt.title("Distribution of wrong predictions", fontsize=font_size)
plt.ylabel('Error rate', fontsize=font_size)
plt.xlabel('Number of data points', fontsize=font_size)
plt.plot(dataPoints, noOfWrongPred, label='Prediction', color='blue', linewidth=1.8)
plt.savefig('distribution of wrong predictions ENRON.png')
def train_test():
features, labels, sorted_split_words = pre_process()
#Defining Hyperparameters
lstm_layers = 1
batch_size = 1
lstm_size = 30
n_words = len(sorted_split_words)
learning_rate = 0.01
print(n_words)
print(lstm_size)
print(batch_size)
#--------------placeholders-------------------------------------
# Create the graph object
graph = tf.Graph()
# Add nodes to the graph
with graph.as_default():
tf.set_random_seed(1)
inputs_ = tf.placeholder(tf.int32, [None,None], name = "inputs")
labels_ = tf.placeholder(tf.int32, [None,None], name = "labels")
#output_keep_prob is the dropout added to the RNN's outputs, the dropout will have no effect on the calculation of the subsequent states.
keep_prob = tf.placeholder(tf.float32, name = "keep_prob")
# Size of the embedding vectors (number of units in the embedding layer)
embed_size = 300
#generating random values from a uniform distribution (minval included and maxval excluded)
embedding = tf.Variable(tf.random_uniform((n_words, embed_size), -1, 1))
embed = tf.nn.embedding_lookup(embedding, inputs_)
print(embedding.shape)
print(embed.shape)
# Your basic LSTM cell
lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)
# Add dropout to the cell
drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob)
#Stack up multiple LSTM layers, for deep learning
cell = tf.contrib.rnn.MultiRNNCell([drop] * lstm_layers)
# Getting an initial state of all zeros
initial_state = cell.zero_state(batch_size, tf.float32)
outputs, final_state = tf.nn.dynamic_rnn(cell, embed, initial_state=initial_state)
#hidden layer
hidden = tf.layers.dense(outputs[:, -1], units=25, activation=tf.nn.relu)
predictions = tf.contrib.layers.fully_connected(hidden, 1, activation_fn=tf.sigmoid)
cost = tf.losses.mean_squared_error(labels_, predictions)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
# correct_pred = tf.equal(tf.cast(tf.round(predictions), tf.int32), labels_)
# accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
# -----------------training-----------------------------------------
with tf.Session(graph=graph) as sess:
tf.set_random_seed(1)
sess.run(tf.global_variables_initializer())
iteration = 1
state = sess.run(initial_state)
wrongPred = 0
noOfWrongPreds = []
dataPoints = []
for ii, (x, y) in enumerate(get_batches(np.array(features), np.array(labels), batch_size), 1):
feed = {inputs_: x,
labels_: y[:, None],
keep_prob: 0.5,
initial_state: state}
prediction = sess.run(predictions, feed_dict=feed)
prediction = prediction.reshape([-1])
prediction = np.round(prediction[0])
prediction = prediction.astype(int)
print(prediction)
isequal = np.equal(prediction, y[0])
if not (isequal):
wrongPred += 1
print("nummber of wrong preds: ", wrongPred)
if iteration % 50 == 0:
noOfWrongPreds.append(wrongPred / iteration)
dataPoints.append(iteration)
loss, states, _ = sess.run([cost, final_state, optimizer], feed_dict=feed)
print("Iteration: {}".format(iteration), "Train loss: {:.3f}".format(loss))
iteration += 1
saver.save(sess, "checkpoints/sentiment.ckpt")
errorRate = wrongPred / len(labels)
print("ERRORS: ", wrongPred)
print("ERROR RATE: ", errorRate)
plot(noOfWrongPreds, dataPoints)
if __name__ == '__main__':
train_test()