-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathNN_MNIST.py
81 lines (52 loc) · 2.67 KB
/
NN_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("temp/data/", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
#height by width
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
def neural_network_model(data):
print(data.shape)
hidden_1_layer ={ 'weights': tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'bias': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'bias': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'bias': tf.Variable(tf.random_normal([n_nodes_hl3]))}
output = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'bias': tf.Variable(tf.random_normal([n_classes]))}
l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['bias'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['bias'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['bias'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output['weights']) + output['bias']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
# precision = tf.metrics.precision( predictions=prediction,labels=y)
# recall = tf.metrics.recall( predictions=prediction, labels=y)
# f1 = tf.matmul(2, (tf.matmul(precision , recall))) / (tf.add(precision + recall))
#cycles of feed forward and backprop
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss =0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer,cost],feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'compleated out of', hm_epochs, 'loss:', epoch_loss)
# print('F1 score: ', f1)
correct = tf.equal(tf.arg_max(prediction,1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('Accuracy:', accuracy.eval({x:mnist.test.images, y:mnist.test.labels}))
train_neural_network(x)