-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathReadme.txt
73 lines (50 loc) · 2.63 KB
/
Readme.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#System Requirements:
- anaconda3
- Opencv3.5, Numpy, Matplotlib
- Pytorch3, Python 3.6.9
########################################
#### Evaluation of Hierarchical approach
########################################
#Final Evaluation of GAMa-Net model on updated/new gallery:
- Run the following script for evaluation
python ./GAMa_Net/evaluationC_pred_Laerial_test_top1per.py
-- Please note that the first time evaluation will take longer (few hours) to create a dictionary; after that evaluation will be faster
More details:
##################################################
###Training and evaluation of both steps
###################################################
#Training GAMa-Net model:
- Run the script to train
python ./GAMa_Net/main.py
(Update '--data_folder' in main.py)
-Please update the dataset path and change the batch size as per the computing power. See file job.sh for prior training details.
#Evaluating GAMa-Net model:
- Run the following scripts, in the given order, for evaluation
python ./GAMa_Net/process_videos_C.py # saves video embedding
python ./GAMa_Net/process_gallery_C.py # saves gallery embedding
python ./GAMa_Net/evaluationC_pred_test.py # evaluates
# Allow a dictionary to load at the start. This may take few minutes.
#########################
#Training screening model using ground truth:
-Run the script:
python ./screening_net/main.py
#Finetuning screening model using prediction from GAMa-Net on training-list:
-First update the list in dataloader and evaluation file
-Run the following script to save a dictionary for training screening network using GAMa-Net evaluation on training-list
- python ./GAMa_Net/process_videos_C.py # saves video embedding
- python ./GAMa_Net/process_gallery_C.py # saves gallery embedding
- python ./GAMa_Net/evaluationC.py # evaluates and saves dictionary
-Run the script:
python ./screening_net/main_finetuning.py
#Evaluating screening model:
- Run the following scripts for evaluation
python ./screening_net/process_video_C.py # saves aerial sequence embedding
python ./screening_net/process_gallery_C.py # saves larger aerial region embedding
python ./screening_net/evaluationC.py # evaluates and saves a dictionary for reduced gallery for GAMa-Net
########################################
#Hierarchical approach
#Final Evaluation using GAMa-Net model on new gallery:
- Run the following script for evaluation
python ./GAMa_Net/evaluationC_pred_Laerial_test_top1per.py
######################################################
########################################################