-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvariational_autoencoder_ukbb.py
303 lines (187 loc) · 7.3 KB
/
variational_autoencoder_ukbb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# coding: utf-8
# In[2]:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda, Layer, Dropout
from keras.models import Model
from keras import backend as K
from keras import metrics
import pandas as pd
#import tensorflow as tf
import keras
# In[3]:
import os
import matplotlib.pyplot as plt
plt.style.use('ggplot')
get_ipython().magic(u'matplotlib inline')
#import pydot
#import graphviz
from keras.utils import plot_model
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
# In[4]:
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn import manifold
# In[5]:
asthma_df=pd.read_csv("ukbb_asthma_sample_5k.csv",sep='\t')
# In[7]:
# Select columns to filter on
cols = [col for col in asthma_df.columns if 'HES_p' not in col and 'PC' not in col]
asthma_df=asthma_df[cols].drop('Unnamed: 0',axis=1)
# In[8]:
#select only 'QUANTITY' fields
asthma_df_quant=asthma_df.loc[:, asthma_df.columns.str.contains('QUANT|age|BMI')].fillna(0.0)
#select only fields with 10 or more unique values
for col in asthma_df_quant.columns:
if len(asthma_df_quant[col].unique()) < 20 :
asthma_df_quant.drop(col,inplace=True,axis=1)
#select only 'QUANTITY' and "CATEGORY" fields
asthma_df_quant_cat=asthma_df.loc[:, asthma_df.columns.str.contains('QUANT|age|BMI|CAT|sex')].fillna(0.0)
asthma_df_quant_cat=asthma_df_quant_cat.drop(columns=['f_22182_0_0_f_CAT_HLA_imputation_values_and_quality'])
# In[17]:
#asthma_df_quant_cat['f_40019_0_p_D44_CAT_Neoplasm_of_uncertain_or_unknown_behaviour_of_endocrine_glands'].value_counts()
# In[18]:
#asthma_df_quant_cat.loc[:,asthma_df_quant_cat.columns.str.contains('CAT')]
# In[20]:
asthma_df_quant.head()
# In[73]:
#data=asthma_df_quant.transpose().values
asthma_df_quant_scaled=asthma_df_quant
scaler = preprocessing.MinMaxScaler(feature_range=(0.0, 1.0))
asthma_df_quant_scaled[asthma_df_quant_scaled.columns]=scaler.fit_transform(asthma_df_quant[asthma_df_quant.columns])
# In[86]:
plt.scatter(asthma_df['age'].values,asthma_df_quant_scaled['age'].values)
# In[89]:
data_minmax=asthma_df_quant_scaled.values
# In[91]:
print data_minmax.shape
# In[92]:
batch_size = 50
original_dim = data.shape[1]
#latent_dim = 2
latent_dim=12
#intermediate_dim = 500
epochs = 200
epsilon_std = 1.0
learning_rate=0.0005
momentum=0.9
# In[93]:
def sampling(args):
import tensorflow as tf
epsilon_std=1.0
z_mean, z_log_var = args
#epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0.,
# stddev=epsilon_std)
epsilon = K.random_normal(shape=tf.shape(z_mean), mean=0.,
stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
def vae_loss(x, x_decoded_mean):
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + z_log_var_encoded - K.square(z_mean_encoded) - K.exp(z_log_var_encoded), axis=-1)
return K.mean(xent_loss + kl_loss)
# In[94]:
#Encoder
x = Input(shape=(original_dim, ))
# Input layer is compressed into a mean and log variance vector of size `latent_dim`
# Each layer is initialized with glorot uniform weights and each step (dense connections, batch norm,
# and relu activation) are funneled separately
# Each vector of length `latent_dim` are connected to the input tensor
# Use dropout to help with training and overfitting
# Use batch normalization for regularization
dropout_frac=0.1
dropout_mean=Dropout(dropout_frac, input_shape=(original_dim,))(x)
dropout_var=Dropout(dropout_frac, input_shape=(original_dim,))(x)
z_mean_dense_linear = Dense(latent_dim, kernel_initializer='glorot_uniform')(dropout_mean)
z_mean_dense_batchnorm = keras.layers.BatchNormalization(momentum=momentum)(z_mean_dense_linear)
z_mean_encoded = keras.layers.Activation('relu')(z_mean_dense_batchnorm)
z_log_var_dense_linear = Dense(latent_dim, kernel_initializer='glorot_uniform')(dropout_var)
z_log_var_dense_batchnorm = keras.layers.BatchNormalization(momentum=momentum)(z_log_var_dense_linear)
z_log_var_encoded = keras.layers.Activation('relu')(z_log_var_dense_batchnorm)
# return the encoded and randomly sampled z vector
# Takes two keras layers as input to the custom sampling function layer with a `latent_dim` output
z = Lambda(sampling, output_shape=(latent_dim, ))([z_mean_encoded, z_log_var_encoded])
# In[95]:
#Decoder
decoder = Dense(original_dim, kernel_initializer='glorot_uniform', activation='sigmoid')
expression_reco = decoder(z)
# In[96]:
np.random.seed(123)
# In[97]:
adam = keras.optimizers.Adam(lr=learning_rate)
#vae_layer = CustomVariationalLayer()([x, expression_reconstruct])
#vae = Model(x, vae_layer)
vae = Model(x, expression_reco)
#RMS prop seems to be the most stable optimizer for this config
vae.compile(optimizer="rmsprop", loss=vae_loss)
#vae.compile(optimizer=adam, loss=vae_loss)
print vae.summary()
# In[99]:
import time
start = time.clock()
data_split=0.2
data_train, data_test = train_test_split(data_minmax, test_size=data_split)
tbCallBack = keras.callbacks.TensorBoard(log_dir='./Graph_AN_Variational', histogram_freq=0, write_graph=True, write_images=True)
earlystop = keras.callbacks.EarlyStopping(monitor='loss', min_delta=0.0001, patience=5, verbose=1, mode='auto')
callbacks_list = [tbCallBack,earlystop]
# In[100]:
hist1=vae.fit(data_train,data_train,
#shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_split=0.2,
callbacks=callbacks_list)
# In[103]:
#Visualize training performance
history_df = pd.DataFrame(hist1.history)
ax = history_df[1:].plot()
ax.set_xlabel('Epochs')
ax.set_ylabel('VAE Loss')
fig = ax.get_figure()
#plt.yscale('log')
# In[104]:
trained = time.clock()
print "Time to train: ",trained-start
# In[105]:
# encoder, from inputs to latent space
encoder = Model(x, z_mean_encoded)
#encoder = Model(x, z)
# generator, from latent space to reconstructed inputs
decoder_input = Input(shape=(latent_dim,))
decoded_latent=decoder(decoder_input)
generator=Model(decoder_input,decoded_latent)
# In[106]:
#data_predict=vae.predict(data_test,batch_size=batch_size)
data_predict=vae.predict_on_batch(data_test)
diffs=np.subtract(data_predict,data_test).flatten()
# In[113]:
plt.hist(diffs, bins='auto') # plt.hist passes it's arguments to np.histogram
plt.title("Predicted phenotype minus real phenotype (normalized)")
plt.xlim(-0.3,0.3)
plt.show()
print np.mean(diffs),np.std(diffs)
# In[115]:
encoded_predict=encoder.predict(data_test)
# In[140]:
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0, perplexity=50,
learning_rate=10, n_iter=1000)
#tsne = manifold.TSNE(n_components=2, init='pca')
tsne_out = tsne.fit_transform(encoded_predict)
# In[141]:
plt.scatter(tsne_out[:,0],tsne_out[:,1])
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
plt.title('Autoencoder QUANTITY FEATURES ONLY tSNE with two components')
plt.show()
# In[122]:
from sklearn import decomposition
pca = decomposition.PCA(n_components=2)
pca_out=pca.fit_transform(encoded_predict)
plt.scatter(pca_out[:,0],pca_out[:,1])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('Autoencoder QUANTITY FEATURES ONLY')
plt.show()
# In[ ]: