forked from adblockradio/adblockradio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictor-file.js
262 lines (225 loc) · 7.97 KB
/
predictor-file.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// Copyright (c) 2018 Alexandre Storelli
"use strict";
const { log } = require("abr-log")("predictor");
const { Readable } = require("stream");
const Hotlist = require("./predictor-db/hotlist.js");
const MlPredictor = require("./predictor-ml/ml.js");
const async = require("async");
const cp = require("child_process");
const fs = require("fs-extra");
class ChunkAudioRead extends Readable {
constructor(options) {
options.objectMode = true;
super(options);
this.file = options.file;
this.records = options.records;
this.predInterval = options.predInterval;
const self = this;
this.decoder = cp.spawn('ffmpeg', [
'-i', 'pipe:0',
'-acodec', 'pcm_s16le',
'-ar', 22050,
'-ac', 1,
'-f', 'wav',
'-v', 'fatal',
'pipe:1'
], { stdio: ['pipe', 'pipe', process.stderr] });
if (this.file) {
fs.createReadStream(self.file).pipe(this.decoder.stdin);
} else if (this.records) {
(async function read() {
for (let i=0; i<self.records.length; i++) {
try {
var data = await fs.readFile(self.records[i]);
} catch (e) {
log.error("could not read file " + self.records[i]);
}
const needToWaitDrain = !self.decoder.stdin.write(data);
if (needToWaitDrain) {
await new Promise(function(resolve) {
self.decoder.stdin.once("drain", resolve);
});
}
}
self.decoder.stdin.end();
})();
}
const bitrate = 22050 * 2; // bytes per second. (16 bit, single channel)
const readAmount = Math.round(self.predInterval * bitrate);
log.debug('readAmount=' + readAmount + ' bytes');
let bytesRead = 0;
this.decoder.stdout.on('readable', function() {
let chunk;
while (null !== (chunk = self.decoder.stdout.read(readAmount))) {
//log.info('Append chunk of ' + readAmount + ' bytes of data.');
bytesRead += chunk.length;
self.push({
data: chunk,
tStart: Math.round((bytesRead - chunk.length) / (bitrate) * 1000), // in ms
tEnd: Math.round(bytesRead / (bitrate) * 1000), // in ms
});
}
});
this.decoder.stdout.on('end', function() {
log.info("decoding finished");
self.push(null);
});
}
_read() {
// Le silence éternel de ces espaces infinis m’effraie.
}
}
class PredictorFile {
constructor(options) {
// stream identification
this.country = options.country; // mandatory argument
this.name = options.name; // mandatory argument
// input file(s) - specify one, as a relative path
this.file = options.file; // arbitrary file to analyse
this.records = options.records; // relative paths of audio chunks, with partial records results in JSON.
this.modelFile = options.modelFile; // ML model for analysis
this.hotlistFile = options.hotlistFile; // ML model for analysis
// output of predictions
this.listener = options.listener; // mandatory argument, instance of a Writable Stream.
if (!this.country || !this.name || !this.listener || (!this.file && !this.records)) {
return log.error("Predictor needs to be constructed with: country (string), name (string), listener (Writable stream) and (file (string) OR records (array of strings))");
}
// default module options
this.config = {
predInterval: 1, // send stream status to listener every N seconds
saveDuration: 10, // save audio file and metadata every N **predInterval times**.
enablePredictorMl: true, // perform machine learning inference (at "predInterval" intervals)
enablePredictorHotlist: true, // compute audio fingerprints and search them in a DB (at "predInterval" intervals)
}
// optional custom config
Object.assign(this.config, options.config);
Object.assign(this.config, { file: undefined, records: undefined });
if (this.config.enablePredictorMl && !this.modelFile) {
return log.error("Must specify a modelFile or disable ML prediction");
} else if (this.config.enablePredictorHotlist && !this.hotlistFile) {
return log.error("Must specify a hotlistFile or disable hotlist prediction");
}
if (this.file) {
log.info("run predictor on file " + this.file + " with config=" + JSON.stringify(this.config));
} else {
log.info("run predictor on " + this.records.length + " records with config=" + JSON.stringify(Object.assign(this.config)));
}
this._onData = this._onData.bind(this);
this.input = new ChunkAudioRead({ file: this.file, records: this.records, predInterval: this.config.predInterval });
this.input.on("error", (err) => log.error("read err=" + err));
this.input.pause();
const self = this;
this.input.on("data", function(dataObj) {
if (self.records) {
const i = Math.floor(dataObj.tStart / 1000 / self.config.predInterval / self.config.saveDuration);
const s = self.records[i].split('.');
dataObj.metadataPath = s.slice(0, s.length - 1).join("."); // remove audio extension
log.debug("read " + dataObj.data.length + " bytes for file " + dataObj.metadataPath);
}
self._onData(dataObj);
});
this.input.on("end", function() {
log.info("all data has been read");
self.readFinished = true;
});
// start analysis as soon as both ML and hotlist are ready
Promise.all([
this.config.enablePredictorHotlist && this.startPredictorHotlist(),
this.config.enablePredictorMl && this.startPredictorMl()
]).then(function() {
log.info("hotlist and/or ml loaded");
self.input.resume();
}).catch(function(err) {
log.error(self.country + "_" + self.name + " predictor err=" + err);
});
}
_onData(dataObj) {
const self = this;
this.input.pause();
// TODO: do the hotlist search only if mlPredictor is unsure?
async.parallel([
function(cb) {
if (!self.config.enablePredictorMl) return setImmediate(cb);
self.mlPredictor.write(dataObj.data);
self.mlPredictor.predict(function(err, data) {
if (!err && data) {
self.listener.write({ type: "ml", data });
} else {
log.warn("skip ml result because err=" + err + " data=" + JSON.stringify(data));
}
cb(err);
});
},
function(cb) {
if (!self.config.enablePredictorHotlist) return setImmediate(cb);
self.hotlist.write(dataObj.data);
self.hotlist.onFingers(function(err, data) {
if (!err && data) {
self.listener.write({ type: "hotlist", data });
} else {
log.warn("skip hotlist result because err=" + err + " data=" + JSON.stringify(data));
}
cb(err);
});
}
], function(err) {
if (err) log.warn("a predictor returned the following error: " + JSON.stringify(err));
// we package all the results in listener's cache data into an object that will go in postProcessing
self.listener.write(Object.assign(dataObj, {
type: "fileChunk",
metadataPath: (dataObj.metadataPath || self.file) + ".json"
}));
if (self.readFinished) {
self.stopPredictors();
self.listener.end();
} else {
self.input.resume();
}
});
}
async startPredictorHotlist() {
if (this.config.enablePredictorHotlist) {
const self = this;
return new Promise(function(resolve, reject) {
self.hotlist = new Hotlist({
country: self.country,
name: self.name,
fileDB: self.hotlistFile,
callback: resolve,
});
});
} else {
this.hotlist = null;
}
}
async startPredictorMl() {
if (this.config.enablePredictorMl) {
const self = this;
return new Promise(function(resolve, reject) {
self.mlPredictor = new MlPredictor({
country: self.country,
name: self.name,
modelFile: self.modelFile,
JSPredictorMl: self.config.JSPredictorMl,
callback: resolve,
});
});
/*const self = this;
(async function() {
await self.mlPredictor.load(self.modelFile);
callback();
})();*/
} else {
this.mlPredictor = null;
}
}
stopPredictors() {
log.info("close predictor");
if (this.hotlist) this.hotlist.destroy();
if (this.mlPredictor) this.mlPredictor.destroy();
}
}
module.exports = PredictorFile;