-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathOneWire.cpp
executable file
·347 lines (300 loc) · 10.6 KB
/
OneWire.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/*
Copyright (c) 2007, Jim Studt
Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains. In any event that was..
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/
#include "OneWire.h"
extern "C" {
#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
#include <avr/io.h>
#include "pins_arduino.h"
}
OneWire::OneWire( uint8_t pinArg)
{
pin = pinArg;
port = digitalPinToPort(pin);
bitmask = digitalPinToBitMask(pin);
outputReg = portOutputRegister(port);
inputReg = portInputRegister(port);
modeReg = portModeRegister(port);
#if ONEWIRE_SEARCH
reset_search();
#endif
}
//
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset() {
uint8_t r;
uint8_t retries = 125;
// wait until the wire is high... just in case
pinMode(pin,INPUT);
do {
if ( retries-- == 0) return 0;
delayMicroseconds(2);
} while( !digitalRead( pin));
digitalWrite(pin,0); // pull low for 500uS
pinMode(pin,OUTPUT);
delayMicroseconds(500);
pinMode(pin,INPUT);
delayMicroseconds(65);
r = !digitalRead(pin);
delayMicroseconds(490);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWire::write_bit(uint8_t v) {
static uint8_t lowTime[] = { 55, 5 };
static uint8_t highTime[] = { 5, 55};
v = (v&1);
*modeReg |= bitmask; // make pin an output, do first since we
// expect to be at 1
*outputReg &= ~bitmask; // zero
delayMicroseconds(lowTime[v]);
*outputReg |= bitmask; // one, push pin up - important for
// parasites, they might start in here
delayMicroseconds(highTime[v]);
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit() {
uint8_t r;
*modeReg |= bitmask; // make pin an output, do first since we expect to be at 1
*outputReg &= ~bitmask; // zero
delayMicroseconds(1);
*modeReg &= ~bitmask; // let pin float, pull up will raise
delayMicroseconds(5); // A "read slot" is when 1mcs > t > 2mcs
r = ( *inputReg & bitmask) ? 1 : 0; // check the bit
delayMicroseconds(50); // whole bit slot is 60-120uS, need to give some time
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power) {
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
pinMode(pin,INPUT);
digitalWrite(pin,0);
}
}
//
// Read a byte
//
uint8_t OneWire::read() {
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( OneWire::read_bit()) r |= bitMask;
}
return r;
}
//
// Do a ROM select
//
void OneWire::select( uint8_t rom[8])
{
int i;
write(0x55,0); // Choose ROM
for( i = 0; i < 8; i++) write(rom[i],0);
}
//
// Do a ROM skip
//
void OneWire::skip()
{
write(0xCC,0); // Skip ROM
}
void OneWire::depower()
{
pinMode(pin,INPUT);
}
#if ONEWIRE_SEARCH
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
uint8_t i;
searchJunction = -1;
searchExhausted = 0;
for( i = 7; ; i--) {
address[i] = 0;
if ( i == 0) break;
}
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use OneWire::reset_search() to
// start over.
//
uint8_t OneWire::search(uint8_t *newAddr)
{
uint8_t i;
char lastJunction = -1;
uint8_t done = 1;
if ( searchExhausted) return 0;
if ( !reset()) return 0;
write( 0xf0, 0);
for( i = 0; i < 64; i++) {
uint8_t a = read_bit( );
uint8_t nota = read_bit( );
uint8_t ibyte = i/8;
uint8_t ibit = 1<<(i&7);
if ( a && nota) return 0; // I don't think this should happen, this means nothing responded, but maybe if
// something vanishes during the search it will come up.
if ( !a && !nota) {
if ( i == searchJunction) { // this is our time to decide differently, we went zero last time, go one.
a = 1;
searchJunction = lastJunction;
} else if ( i < searchJunction) { // take whatever we took last time, look in address
if ( address[ ibyte]&ibit) a = 1;
else { // Only 0s count as pending junctions, we've already exhasuted the 0 side of 1s
a = 0;
done = 0;
lastJunction = i;
}
} else { // we are blazing new tree, take the 0
a = 0;
searchJunction = i;
done = 0;
}
lastJunction = i;
}
if ( a) address[ ibyte] |= ibit;
else address[ ibyte] &= ~ibit;
write_bit( a);
}
if ( done) searchExhausted = 1;
for ( i = 0; i < 8; i++) newAddr[i] = address[i];
return 1;
}
#endif
// This table comes from Dallas sample code where it is freely reusable, though Copyright (C) 2000 Dallas Semiconductor Corporation
static uint8_t dscrc_table[] = {
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
//
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (note: this might better be done without to
// table, it would probably be smaller and certainly fast enough
// compared to all those delayMicrosecond() calls. But I got
// confused, so I use this table from the examples.)
//
uint8_t OneWire::crc8( uint8_t *addr, uint8_t len)
{
uint8_t i;
uint8_t crc = 0;
for ( i = 0; i < len; i++) {
crc = dscrc_table[ crc ^ addr[i] ];
}
return crc;
}
#if ONEWIRE_CRC16
static short oddparity[16] = { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
//
// Compute a Dallas Semiconductor 16 bit CRC. I have never seen one of
// these, but here it is.
//
unsigned short OneWire::crc16(unsigned short *data, unsigned short len)
{
unsigned short i;
unsigned short crc = 0;
for ( i = 0; i < len; i++) {
unsigned short cdata = data[len];
cdata = (cdata ^ (crc & 0xff)) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0xf] ^ oddparity[cdata >> 4]) crc ^= 0xc001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
return crc;
}
#endif