-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_multi.py
133 lines (90 loc) · 3.88 KB
/
eval_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
from ast import Mult
import torch
import random
import os
import numpy as np
import torch.nn as nn
from tqdm import tqdm
from torch.utils.data import DataLoader
from data_loader import MultiDataset
from model import get_model
from utils import print_metrics
from experiment import get_experiment
from PIL import Image
import matplotlib.pyplot as plt
import warnings
from sklearn.metrics import classification_report
os.environ["CUDA_VISIBLE_DEVICES"]="0"
warnings.filterwarnings("ignore")
RANDOM_SEED = 0
torch.manual_seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(
description='Multimodal Rumor Detection and Verification')
parser.add_argument('--batch_size', type=int, default=1, metavar='N',
help='input batch size for training (default: 16)')
parser.add_argument('--epoch', type=int, default=5, metavar='N',
help='number of epochs to train (default: 5)')
parser.add_argument('--hidden_dim', type=int, default=768, metavar='N',
help='hidden dimension (default: 768)')
parser.add_argument('--max_len', type=int, default=64, metavar='N',
help='maximum length of the conversation (default: 32)')
parser.add_argument('--dropout', type=float, default=0.1, metavar='N',
help='dropout rate (default: 0.5)')
parser.add_argument('--model', type=str, default="cban", metavar='N',
help='model name')
parser.add_argument('--experiment', type=str, metavar='N',
help='experiment name')
parser.add_argument('--fold', type=int, default=0, metavar='N',
help='experiment name')
args = parser.parse_args()
def train():
experiment = get_experiment(args.experiment)
image_dir = experiment["image_dir"]
root_dir = os.path.join(experiment["root_dir"], str(args.fold))
language = experiment["language"]
classes = experiment["classes"]
test_path = os.path.join(root_dir, "test.json")
test_dataset = MultiDataset(
test_path, image_dir, classes, train=False, language=language)
test_dataloader = DataLoader(
dataset=test_dataset, batch_size=args.batch_size, shuffle=True)
model = get_model(args.model,args.hidden_dim, len(classes),
args.dropout, language=language)
model = nn.DataParallel(model)
model = model.to(device)
comment = f'{args.model}_{args.experiment}_{args.fold}'
checkpoint_dir = os.path.join("checkpoints/",comment)
checkpoint_path = os.path.join(checkpoint_dir, "best_model.pth")
model.module.load_state_dict(torch.load(checkpoint_path))
model.eval()
test_count = 0
test_predicts = []
test_labels = []
for i, batch in enumerate(tqdm(test_dataloader)):
images = batch["image"].to(device)
input_ids = batch['input_ids'].squeeze(1).to(device)
attention_mask = batch['attention_mask'].squeeze(1).to(device)
labels = batch['label'].to(device)
image_mask = batch['image_mask'].to(device)
with torch.no_grad():
outputs = model(
input_ids=input_ids, attention_mask=attention_mask, images=images, image_mask=image_mask)
_, preds = torch.max(outputs, 1)
test_count += labels.size(0)
for pred in preds.tolist():
test_predicts.append(pred)
for lab in labels.tolist():
test_labels.append(lab)
all_labels = [int(test_label) for test_label in test_labels]
all_labels = list(set(all_labels))
all_labels = sorted(all_labels)
print_metrics(test_labels, test_predicts)
print(classification_report(test_labels, test_predicts,labels=all_labels,digits=3))
if __name__ == "__main__":
train()