-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_image.py
223 lines (145 loc) · 6.71 KB
/
train_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import argparse
import time
import torch
import random
import os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from sklearn.metrics import f1_score, accuracy_score
from data_loader import ImageDataset
from model import get_model
from utils import print_metrics, labels_to_weights
from experiment import get_experiment
from transformers import logging
import warnings
from transformers import get_linear_schedule_with_warmup
os.environ["CUDA_VISIBLE_DEVICES"]="0"
warnings.filterwarnings("ignore")
RANDOM_SEED = 0
torch.manual_seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
logging.set_verbosity_error()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(
description='Multimodal Rumor Detection and Verification')
parser.add_argument('--batch_size', type=int, default=32, metavar='N',
help='input batch size for training (default: 16)')
parser.add_argument('--epochs', type=int, default=20, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=3e-5, metavar='N',
help='learning rate (default: 2e-5)')
parser.add_argument('--weight_decay', type=float, default=1e-3, metavar='N',
help='weight decay (default: 1e-3)')
parser.add_argument('--hidden_dim', type=int, default=768, metavar='N',
help='hidden dimension (default: 768)')
parser.add_argument('--max_len', type=int, default=64, metavar='N',
help='maximum length of the conversation (default: 64)')
parser.add_argument('--dropout', type=float, default=0.1, metavar='N',
help='dropout rate (default: 0.1)')
parser.add_argument('--experiment', type=str, metavar='N',
help='experiment name')
parser.add_argument('--model', type=str, default='image',metavar='N',
help='model name')
parser.add_argument('--fold', type=int, default=0, metavar='N',
help='experiment name')
args = parser.parse_args()
def train():
experiment = get_experiment(args.experiment)
image_dir = experiment["image_dir"]
root_dir = os.path.join(experiment["root_dir"], str(args.fold))
language = experiment["language"]
classes = experiment["classes"]
train_path = os.path.join(root_dir, "train.json")
train_dataset = ImageDataset(
train_path, image_dir, classes, train=True, language=language)
train_dataloader = DataLoader(
dataset=train_dataset, batch_size=args.batch_size, shuffle=True)
test_path = os.path.join(root_dir, "test.json")
test_dataset = ImageDataset(
test_path, image_dir, classes, train=False, language=language)
test_dataloader = DataLoader(
dataset=test_dataset, batch_size=args.batch_size, shuffle=True)
print('num of training / testing samples : {} / {} '.format(len(train_dataset), len(test_dataset)))
model = get_model(args.model,args.hidden_dim, len(classes),
args.dropout, language=language)
model = nn.DataParallel(model)
model = model.to(device)
labels = [int(item) for item in train_dataset.labels]
weight = labels_to_weights(labels).to(device)
criterion = nn.CrossEntropyLoss(weight=weight,label_smoothing=0.1)
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
comment = f'{args.model}_{args.experiment}_{args.fold}'
scheduler = get_linear_schedule_with_warmup(optimizer,int(0.1*args.epochs),int(args.epochs))
writer = SummaryWriter(log_dir="runs/{}_{}".format(str(int(time.time())),"train_" + comment))
checkpoint_dir = os.path.join("checkpoints/",comment)
os.makedirs(checkpoint_dir,exist_ok=True)
best_f1 = 0.0
for epoch in range(1, args.epochs+1):
model.train()
train_loss = 0.0
train_count = 0
train_predicts = []
train_labels = []
for i, batch in enumerate(tqdm(train_dataloader)):
images = batch["image"].to(device)
labels = batch['label'].to(device)
image_mask = batch['image_mask'].to(device)
outputs = model(images=images, image_mask=image_mask)
loss = criterion(outputs, labels)
train_loss += loss.item() * labels.size(0)
loss.backward()
_, preds = torch.max(outputs, 1)
train_count += labels.size(0)
for pred in preds.tolist():
train_predicts.append(pred)
for lab in labels.tolist():
train_labels.append(lab)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
train_loss = train_loss/train_count
train_acc = accuracy_score(train_labels, train_predicts)
train_f1 = f1_score(train_labels, train_predicts, average='macro')
writer.add_scalar("Loss/train", train_loss, epoch)
writer.add_scalar("Accuracy/train", train_acc, epoch)
writer.add_scalar("F1_MAC/train", train_f1, epoch)
model.eval()
test_loss = 0.0
test_count = 0
test_predicts = []
test_labels = []
for i, batch in enumerate(tqdm(test_dataloader)):
images = batch["image"].to(device)
labels = batch['label'].to(device)
image_mask = batch['image_mask'].to(device)
with torch.no_grad():
outputs = model(images=images, image_mask=image_mask)
loss = criterion(outputs, labels)
test_loss += loss.item() * labels.size(0)
_, preds = torch.max(outputs, 1)
test_count += labels.size(0)
for pred in preds.tolist():
test_predicts.append(pred)
for lab in labels.tolist():
test_labels.append(lab)
test_loss = test_loss/test_count
test_acc = accuracy_score(test_labels, test_predicts)
test_f1 = f1_score(test_labels, test_predicts, average='macro')
writer.add_scalar("Loss/test", test_loss, epoch)
writer.add_scalar("Accuracy/test", test_acc, epoch)
writer.add_scalar("F1_MAC/test", test_f1, epoch)
print("Epoch: {} / {}".format(epoch, args.epochs))
print_metrics(test_labels, test_predicts)
if test_f1 > best_f1:
checkpoint_path = os.path.join(checkpoint_dir, "best_model.pth")
torch.save(model.module.state_dict(),checkpoint_path)
best_f1 = test_f1
if __name__ == "__main__":
train()