-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
138 lines (91 loc) · 3.86 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import torch
import random
import numpy as np
import os
from tqdm import tqdm
from torch_geometric.nn import DataParallel
from torch_geometric.loader import DataListLoader
from sklearn.metrics import classification_report
from data_loader import RumorDataset
from model import get_model
from utils import print_metrics, clean_cache
from experiment import get_experiment
from transformers import logging
import warnings
os.environ["CUDA_VISIBLE_DEVICES"]="0"
warnings.filterwarnings("ignore")
logging.set_verbosity_error()
torch.cuda.empty_cache()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(
description='Early Graph Rumor Detection and Verification (baseline)')
parser.add_argument('--batch_size', type=int, default=32, metavar='N',
help='input batch size for training (default: 16)')
parser.add_argument('--hidden_dim', type=int, default=768, metavar='N',
help='hidden dimension (default: 768)')
parser.add_argument('--max_len', type=int, default=64, metavar='N',
help='maximum length of the conversation (default: 32)')
parser.add_argument('--experiment', type=str, metavar='N',
help='experiment name')
parser.add_argument('--model', type=str, default="CDGTN", metavar='N',
help='model name')
parser.add_argument('--fold', type=int, default=0, metavar='N',
help='experiment name')
parser.add_argument('--seed', type=int, default=0, metavar='N',
help='experiment name')
parser.add_argument('--aug', type=bool, default=True, metavar='N',
help='experiment name')
args = parser.parse_args()
def eval():
RANDOM_SEED = args.seed
torch.manual_seed(RANDOM_SEED)
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# clean_cache()
experiment = get_experiment(args.experiment)
root_dir = os.path.join(experiment["root_dir"], str(args.fold))
language = experiment["language"]
classes = experiment["classes"]
test_dataset = RumorDataset(
root=root_dir,
classes=classes,
split='test',
language=language,
max_length=args.max_len,
aug=args.aug
)
test_loader = DataListLoader(
test_dataset, batch_size=args.batch_size, shuffle=False)
print('testing samples : {} '.format(len(test_dataset)))
model = get_model(args.model,args.hidden_dim, len(classes), dropout=0.0, language=language)
model = DataParallel(model).to(device)
comment = f'{args.model}_{args.experiment}_{args.fold}_{args.seed}'
checkpoint_dir = os.path.join("checkpoints/",comment)
with torch.no_grad():
checkpoint_path = os.path.join(checkpoint_dir, "best_model.pth")
model.module.load_state_dict(torch.load(checkpoint_path))
model.eval()
test_count = 0
predicts = []
test_labels = []
for _, batch in enumerate(tqdm(test_loader)):
labels = torch.cat([data.y for data in batch]).to(device).long()
with torch.no_grad():
outputs = model(batch)
outputs = outputs[0] if type(outputs) is tuple else outputs
_, predict = torch.max(outputs, 1)
test_count += labels.size(0)
test_labels.append(labels.cpu().detach().numpy())
predicts.append(predict.cpu().detach().numpy())
test_labels = np.concatenate(test_labels).ravel()
predicts = np.concatenate(predicts).ravel()
all_labels = [int(test_label) for test_label in test_labels]
all_labels = list(set(all_labels))
all_labels = sorted(all_labels)
print_metrics(test_labels, predicts)
print(classification_report(test_labels, predicts,digits=3))
if __name__ == "__main__":
eval()