-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate.py
225 lines (185 loc) · 7.62 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import json
import util
import config
import random
import logging
import numpy as np
from glob import glob
from itertools import chain
from datetime import datetime
from faces import compare_faces
from models import Img, Screenshot
from text import extract_screenshots
from PIL import Image, ImageDraw, ImageOps, ImageFont
from images import transform, layout, compare, annotate, mangle
# tensorflow logging
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
logger = logging.getLogger('conspiracy')
def get_similar(entities, thresh, comparator):
"""get pairs of similar images,
according to the comparator (distance) function"""
entities = [(k, v['path']) for k, v in entities.items()]
ids, paths = zip(*entities)
dists = comparator(paths)
pairs = np.argwhere(dists <= thresh)
# remove permutations
pairs = set(tuple(sorted(p)) for p in pairs)
# get entity ids and
# filter out self-pairings
pairs = [(ids[a], ids[b]) for a, b in pairs if a != b]
# filter out pairs that are between two of the same images
pairs = [(a, b) for a, b in pairs
if a.split('_')[0] != b.split('_')[0]]
# unique ids included in pairs
ids = set(chain(*pairs))
return pairs, ids
def render(images, pairs, out='output.jpg', shakiness=30, debug=True):
"""collages the images, annotating similar pairs by drawing links"""
canvas = Image.new('RGB', config.SIZE, color=0)
draw = ImageDraw.Draw(canvas)
meta = {
'name': out,
'padding': config.PADDING,
'images': {}
}
image_ref = {im.id: im for im in images}
edges = []
for a, b in pairs:
a_im_path = a.rsplit('_', 2)[0]
b_im_path = b.rsplit('_', 2)[0]
edges.append((image_ref[a_im_path], image_ref[b_im_path]))
images = util.walk_sort(edges)
logger.info('after sorting: {}'.format(len(images)))
if len(images) < config.MIN_IMAGES:
return
# get articles
articles = [im.article for im in images if im.article is not None]
articles = random.sample(articles, min(len(articles), 5))
# extract screenshots of text
texts = extract_screenshots(articles)
vals = images + texts
ims = [im.im for im in vals]
logger.info('total source material: {}'.format(len(ims)))
# layout images (may not include all)
to_place = layout.layout(vals, canvas, shakiness=shakiness)
# include at least one screenshot if there are any
logger.info('extracted texts: {}'.format(texts))
if not any(isinstance(im, Screenshot) for im, _ in to_place) and texts:
logger.info('adding text')
img, pos = to_place.pop(-1)
txt = texts[0]
txt.resize_to_limit(img.size)
to_place.append((txt, pos))
# paste selections into image
placed_ents = []
for img, pos in to_place:
meta['images'][img.id] = {
'pos': pos,
'size': img.size
}
placed_ents.extend(list(img.entities.keys()))
im = img.im
if not isinstance(img, Screenshot) and random.random() <= config.MANGLE_PROB:
im = mangle.mangle(img.im)
canvas.paste(im, pos)
if debug:
label = getattr(img, 'path', img.id)
annotate.label(draw, label, pos)
for e in getattr(img, 'entities', {}).values():
e['bbox'] = transform.shift_rect(e['bbox'], pos)
# generate notes
phrs = random.sample(config.NOTES, random.randint(2, 5))
font = ImageFont.truetype('assets/font.ttf', 26)
for ph in phrs:
w, h = draw.textsize(ph, font=font)
pos = (random.randint(20, config.SIZE[0]-w), random.randint(20, config.SIZE[1]-h))
annotate.label(draw, ph, pos, bg=False, color=(255,255,255), font=font)
# filter out pairs that have an unplaced image
pairs = [(a, b) for a, b in pairs
if a in placed_ents and b in placed_ents]
eids = set(chain(*pairs))
entities = {}
for img in images:
for id, e in img.entities.items():
if id in eids:
entities[id] = e
canvas = ImageOps.expand(canvas, config.PADDING, fill=0)
draw = ImageDraw.Draw(canvas)
# draw circles and arrows
colors = util.assign_entity_colors(pairs)
for id, e in entities.items():
bbox = [v+config.PADDING for v in e['bbox']]
annotate.circle(draw, bbox, fill=colors[id])
if random.random() < 0.3:
annotate.arrow(draw, bbox, fill=colors[id])
if debug:
annotate.label(draw, id, bbox[:2])
if len(pairs) < config.MIN_PAIRS:
return
# draw links
for a, b in pairs:
logger.info('linking: {}'.format((a, b)))
ax, ay = entities[a]['bbox'][:2]
bx, by = entities[b]['bbox'][:2]
annotate.link(
draw, (ax+config.PADDING, ay+config.PADDING), (bx+config.PADDING, by+config.PADDING), fill=colors[a])
canvas.save(out)
meta['size'] = canvas.size
return meta
if __name__ == '__main__':
from time import sleep
logging.basicConfig(level=logging.INFO)
# need to remove guardian images
# they all have a huge watermark...
g = glob('{}/data/theguardian.com/*.json'.format(config.REALITY_PATH))
g_ids = []
for p in g:
for a in json.load(open(p, 'r')):
g_ids.append('{}/data/_images/{}'.format(config.REALITY_PATH, util.hash(a['image'])))
while True:
misc_images = glob('assets/commons/*')
news_images = [p for p in glob('{}/data/_images/*'.format(config.REALITY_PATH)) if p not in g_ids]
logger.info('news images: {}, misc images: {}'.format(len(news_images), len(misc_images)))
paths = random.sample(news_images, config.SAMPLE[0]) + random.sample(misc_images, config.SAMPLE[1])
images = []
for path in paths:
try:
images.append(Img(path))
except OSError:
continue
logger.info('images: {}'.format(len(images)))
logger.info('filtering similar images...')
images = compare.filter_similar(images, config.IMAGE_SIM_THRESH)
logger.info('remaining images: {}'.format(len(images)))
faces, objects = {}, {}
for img in images:
faces.update(img.faces)
objects.update(img.objects)
logger.info('faces: {}'.format(len(faces)))
logger.info('objects: {}'.format(len(objects)))
fpairs, fids = get_similar(faces, config.FACE_DIST_THRESH, compare_faces)
opairs, oids = get_similar(objects, config.OBJ_DIST_THRESH, compare.compute_dists)
eids = fids.union(oids)
pairs = fpairs + opairs
# only include images which have entities present in pairs
images = [img for img in images
if any(id in eids for id in img.entities.keys())]
logger.info('pairs: {}'.format(len(pairs)))
logger.info('images: {}'.format(len(images)))
if len(pairs) >= config.MIN_PAIRS:
fname = datetime.utcnow().strftime('%Y%m%d%H%M')
meta = render(images, pairs, out='public/vault/{}.jpg'.format(fname))
if meta is not None:
with open('public/vault/{}.json'.format(fname), 'w') as f:
json.dump(meta, f)
tmpl = open('assets/templates/index.html', 'r').read()
figs = ['<figure><img src="{}"></figure>'.format(im.replace('public/', ''))
for im in sorted(glob('public/vault/*.jpg'), reverse=True)]
html = tmpl.format(figures='\n'.join(figs))
with open('public/index.html', 'w') as f:
f.write(html)
util.sync()
else:
print('no dice')
sleep(config.INTERVAL)