-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathobjects.py
54 lines (48 loc) · 1.42 KB
/
objects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import json
import numpy as np
from PIL import Image
from darkflow.net.build import TFNet
opts = {
'model': 'assets/models/yolo/yolo.cfg',
'load': 'assets/models/yolo/yolo.weights',
'config': 'assets/models/yolo/',
'threshold': 0.1
}
tfnet = TFNet(opts)
def extract_objects(path):
fname = path.split('/')[-1]
dir = 'data/objects/{}'.format(fname)
if os.path.exists(dir):
return []
else:
os.makedirs(dir)
try:
image = Image.open(path).convert('RGB')
except OSError:
return []
detected = tfnet.return_predict(np.array(image))
detected = [{
'label': r['label'],
'confidence': r['confidence'],
'bbox': (
r['topleft']['x'], r['topleft']['y'],
r['bottomright']['x'], r['bottomright']['y'],
)
} for r in detected]
bboxes = []
labels = [(r['label'], float(r['confidence'])) for r in detected]
for i, r in enumerate(detected):
crop = image.crop(r['bbox'])
crop.save('{}/{}.jpg'.format(dir, i))
bboxes.append(r['bbox'])
with open('{}/bboxes.json'.format(dir), 'w') as f:
json.dump(bboxes, f)
with open('{}/labels.json'.format(dir), 'w') as f:
json.dump(labels, f)
return detected
if __name__ == '__main__':
from glob import glob
from tqdm import tqdm
for p in tqdm(glob('../reality/data/_images/*')):
extract_objects(p)